AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.014 0.907 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.15
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000114
Time: 23:02:20 Log-Likelihood: -100.79
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.8483 89.303 1.084 0.292 -90.064 283.761
C(dose)[T.1] -49.1732 152.561 -0.322 0.751 -368.486 270.140
expression -5.9655 12.464 -0.479 0.638 -32.053 20.122
expression:C(dose)[T.1] 14.6614 21.846 0.671 0.510 -31.063 60.386
Omnibus: 1.567 Durbin-Watson: 1.931
Prob(Omnibus): 0.457 Jarque-Bera (JB): 1.022
Skew: 0.177 Prob(JB): 0.600
Kurtosis: 2.030 Cond. No. 297.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.81e-05
Time: 23:02:20 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.7358 72.410 0.866 0.397 -88.308 213.780
C(dose)[T.1] 53.0234 9.160 5.789 0.000 33.916 72.131
expression -1.1930 10.095 -0.118 0.907 -22.250 19.864
Omnibus: 0.243 Durbin-Watson: 1.889
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.436
Skew: 0.051 Prob(JB): 0.804
Kurtosis: 2.334 Cond. No. 119.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:02:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.062
Model: OLS Adj. R-squared: 0.017
Method: Least Squares F-statistic: 1.382
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.253
Time: 23:02:20 Log-Likelihood: -112.37
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 207.0233 108.519 1.908 0.070 -18.655 432.702
expression -18.1295 15.422 -1.176 0.253 -50.201 13.942
Omnibus: 3.620 Durbin-Watson: 2.524
Prob(Omnibus): 0.164 Jarque-Bera (JB): 1.709
Skew: 0.334 Prob(JB): 0.425
Kurtosis: 1.844 Cond. No. 111.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.605 0.229 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 3.913
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0399
Time: 23:02:20 Log-Likelihood: -69.853
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -169.9484 246.222 -0.690 0.504 -711.880 371.983
C(dose)[T.1] 118.2600 328.166 0.360 0.725 -604.029 840.549
expression 31.3318 32.465 0.965 0.355 -40.124 102.788
expression:C(dose)[T.1] -10.0274 42.501 -0.236 0.818 -103.571 83.516
Omnibus: 2.037 Durbin-Watson: 1.071
Prob(Omnibus): 0.361 Jarque-Bera (JB): 1.478
Skew: -0.594 Prob(JB): 0.478
Kurtosis: 2.023 Cond. No. 465.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 6.341
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0132
Time: 23:02:20 Log-Likelihood: -69.891
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -125.6195 152.745 -0.822 0.427 -458.422 207.183
C(dose)[T.1] 40.9364 16.156 2.534 0.026 5.736 76.137
expression 25.4807 20.111 1.267 0.229 -18.337 69.298
Omnibus: 1.970 Durbin-Watson: 1.017
Prob(Omnibus): 0.374 Jarque-Bera (JB): 1.488
Skew: -0.621 Prob(JB): 0.475
Kurtosis: 2.085 Cond. No. 164.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:02:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.254
Model: OLS Adj. R-squared: 0.196
Method: Least Squares F-statistic: 4.419
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0556
Time: 23:02:21 Log-Likelihood: -73.106
No. Observations: 15 AIC: 150.2
Df Residuals: 13 BIC: 151.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -263.1302 169.959 -1.548 0.146 -630.305 104.044
expression 46.0435 21.903 2.102 0.056 -1.276 93.363
Omnibus: 1.100 Durbin-Watson: 1.708
Prob(Omnibus): 0.577 Jarque-Bera (JB): 0.751
Skew: 0.108 Prob(JB): 0.687
Kurtosis: 1.925 Cond. No. 153.