AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.865 | 0.363 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 12.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.57e-05 |
Time: | 05:24:05 | Log-Likelihood: | -100.28 |
No. Observations: | 23 | AIC: | 208.6 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.1942 | 58.367 | 0.774 | 0.448 | -76.969 167.358 |
C(dose)[T.1] | -4.1877 | 82.445 | -0.051 | 0.960 | -176.748 168.372 |
expression | 1.6234 | 10.456 | 0.155 | 0.878 | -20.261 23.508 |
expression:C(dose)[T.1] | 10.5321 | 14.872 | 0.708 | 0.487 | -20.594 41.659 |
Omnibus: | 0.011 | Durbin-Watson: | 2.021 |
Prob(Omnibus): | 0.994 | Jarque-Bera (JB): | 0.128 |
Skew: | -0.034 | Prob(JB): | 0.938 |
Kurtosis: | 2.642 | Cond. No. | 141. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 19.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.86e-05 |
Time: | 05:24:05 | Log-Likelihood: | -100.58 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 16.2862 | 41.197 | 0.395 | 0.697 | -69.649 102.221 |
C(dose)[T.1] | 53.8736 | 8.605 | 6.260 | 0.000 | 35.923 71.824 |
expression | 6.8297 | 7.342 | 0.930 | 0.363 | -8.486 22.145 |
Omnibus: | 0.052 | Durbin-Watson: | 1.908 |
Prob(Omnibus): | 0.974 | Jarque-Bera (JB): | 0.273 |
Skew: | -0.017 | Prob(JB): | 0.872 |
Kurtosis: | 2.467 | Cond. No. | 55.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:24:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.09293 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.763 |
Time: | 05:24:05 | Log-Likelihood: | -113.05 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.0409 | 68.209 | 0.866 | 0.396 | -82.807 200.888 |
expression | 3.7492 | 12.299 | 0.305 | 0.763 | -21.828 29.326 |
Omnibus: | 3.804 | Durbin-Watson: | 2.475 |
Prob(Omnibus): | 0.149 | Jarque-Bera (JB): | 1.607 |
Skew: | 0.252 | Prob(JB): | 0.448 |
Kurtosis: | 1.807 | Cond. No. | 54.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.164 | 0.693 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.618 |
Model: | OLS | Adj. R-squared: | 0.514 |
Method: | Least Squares | F-statistic: | 5.938 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0116 |
Time: | 05:24:05 | Log-Likelihood: | -68.078 |
No. Observations: | 15 | AIC: | 144.2 |
Df Residuals: | 11 | BIC: | 147.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1.4055 | 66.634 | -0.021 | 0.984 | -148.067 145.256 |
C(dose)[T.1] | 283.8492 | 108.540 | 2.615 | 0.024 | 44.955 522.743 |
expression | 14.0828 | 13.479 | 1.045 | 0.319 | -15.583 43.749 |
expression:C(dose)[T.1] | -45.0177 | 20.836 | -2.161 | 0.054 | -90.876 0.841 |
Omnibus: | 0.719 | Durbin-Watson: | 1.320 |
Prob(Omnibus): | 0.698 | Jarque-Bera (JB): | 0.227 |
Skew: | -0.299 | Prob(JB): | 0.893 |
Kurtosis: | 2.916 | Cond. No. | 110. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.366 |
Method: | Least Squares | F-statistic: | 5.034 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0259 |
Time: | 05:24:05 | Log-Likelihood: | -70.731 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 90.6771 | 58.531 | 1.549 | 0.147 | -36.850 218.205 |
C(dose)[T.1] | 51.4434 | 16.589 | 3.101 | 0.009 | 15.300 87.587 |
expression | -4.7564 | 11.745 | -0.405 | 0.693 | -30.346 20.833 |
Omnibus: | 2.406 | Durbin-Watson: | 0.766 |
Prob(Omnibus): | 0.300 | Jarque-Bera (JB): | 1.635 |
Skew: | -0.787 | Prob(JB): | 0.442 |
Kurtosis: | 2.631 | Cond. No. | 40.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:24:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.020 |
Model: | OLS | Adj. R-squared: | -0.055 |
Method: | Least Squares | F-statistic: | 0.2707 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.612 |
Time: | 05:24:05 | Log-Likelihood: | -75.146 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.5005 | 74.045 | 0.750 | 0.467 | -104.465 215.466 |
expression | 7.4256 | 14.273 | 0.520 | 0.612 | -23.409 38.260 |
Omnibus: | 1.236 | Durbin-Watson: | 1.627 |
Prob(Omnibus): | 0.539 | Jarque-Bera (JB): | 0.816 |
Skew: | 0.179 | Prob(JB): | 0.665 |
Kurtosis: | 1.915 | Cond. No. | 39.6 |