AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.096 0.760 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 12.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.12e-05
Time: 04:55:51 Log-Likelihood: -100.51
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.7156 32.126 2.544 0.020 14.475 148.956
C(dose)[T.1] 11.9983 46.260 0.259 0.798 -84.825 108.821
expression -6.6446 7.620 -0.872 0.394 -22.594 9.305
expression:C(dose)[T.1] 9.8080 10.673 0.919 0.370 -12.531 32.147
Omnibus: 0.210 Durbin-Watson: 1.869
Prob(Omnibus): 0.900 Jarque-Bera (JB): 0.413
Skew: -0.032 Prob(JB): 0.813
Kurtosis: 2.347 Cond. No. 62.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.70e-05
Time: 04:55:51 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.0175 22.819 2.674 0.015 13.419 108.616
C(dose)[T.1] 53.7198 8.836 6.080 0.000 35.288 72.151
expression -1.6448 5.315 -0.309 0.760 -12.731 9.442
Omnibus: 0.658 Durbin-Watson: 1.889
Prob(Omnibus): 0.720 Jarque-Bera (JB): 0.655
Skew: 0.078 Prob(JB): 0.721
Kurtosis: 2.188 Cond. No. 23.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:55:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1102
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.743
Time: 04:55:52 Log-Likelihood: -113.04
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4869 37.541 1.798 0.087 -10.583 145.557
expression 2.8770 8.667 0.332 0.743 -15.147 20.901
Omnibus: 3.057 Durbin-Watson: 2.425
Prob(Omnibus): 0.217 Jarque-Bera (JB): 1.441
Skew: 0.234 Prob(JB): 0.486
Kurtosis: 1.867 Cond. No. 23.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.483 0.500 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 3.593
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0498
Time: 04:55:52 Log-Likelihood: -70.177
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.4427 62.381 1.049 0.317 -71.857 202.742
C(dose)[T.1] -10.0371 87.969 -0.114 0.911 -203.655 183.581
expression 0.3755 11.594 0.032 0.975 -25.143 25.894
expression:C(dose)[T.1] 13.0041 17.682 0.735 0.477 -25.914 51.923
Omnibus: 2.691 Durbin-Watson: 1.036
Prob(Omnibus): 0.260 Jarque-Bera (JB): 1.987
Skew: -0.847 Prob(JB): 0.370
Kurtosis: 2.445 Cond. No. 75.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 5.323
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0221
Time: 04:55:52 Log-Likelihood: -70.537
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.8762 46.777 0.767 0.458 -66.042 137.794
C(dose)[T.1] 53.4488 16.601 3.220 0.007 17.279 89.619
expression 5.9665 8.585 0.695 0.500 -12.738 24.671
Omnibus: 1.854 Durbin-Watson: 0.854
Prob(Omnibus): 0.396 Jarque-Bera (JB): 1.403
Skew: -0.692 Prob(JB): 0.496
Kurtosis: 2.427 Cond. No. 32.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:55:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.064
Method: Least Squares F-statistic: 0.1626
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.693
Time: 04:55:52 Log-Likelihood: -75.207
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.3829 52.360 2.185 0.048 1.265 227.500
expression -4.2208 10.468 -0.403 0.693 -26.835 18.393
Omnibus: 0.418 Durbin-Watson: 1.499
Prob(Omnibus): 0.812 Jarque-Bera (JB): 0.505
Skew: 0.013 Prob(JB): 0.777
Kurtosis: 2.101 Cond. No. 26.9