AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.413 | 0.528 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.675 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 13.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.97e-05 |
Time: | 04:28:12 | Log-Likelihood: | -100.17 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 92.0466 | 282.800 | 0.325 | 0.748 | -499.861 683.954 |
C(dose)[T.1] | -454.7276 | 475.934 | -0.955 | 0.351 | -1450.869 541.414 |
expression | -3.4438 | 25.733 | -0.134 | 0.895 | -57.303 50.415 |
expression:C(dose)[T.1] | 44.4071 | 42.118 | 1.054 | 0.305 | -43.747 132.561 |
Omnibus: | 0.817 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.665 | Jarque-Bera (JB): | 0.735 |
Skew: | 0.124 | Prob(JB): | 0.692 |
Kurtosis: | 2.160 | Cond. No. | 1.53e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.31e-05 |
Time: | 04:28:12 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -90.0841 | 224.535 | -0.401 | 0.693 | -558.456 378.288 |
C(dose)[T.1] | 46.8801 | 13.276 | 3.531 | 0.002 | 19.188 74.572 |
expression | 13.1324 | 20.428 | 0.643 | 0.528 | -29.480 55.745 |
Omnibus: | 0.906 | Durbin-Watson: | 1.758 |
Prob(Omnibus): | 0.636 | Jarque-Bera (JB): | 0.785 |
Skew: | 0.156 | Prob(JB): | 0.675 |
Kurtosis: | 2.150 | Cond. No. | 587. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:28:12 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.442 |
Model: | OLS | Adj. R-squared: | 0.415 |
Method: | Least Squares | F-statistic: | 16.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000541 |
Time: | 04:28:12 | Log-Likelihood: | -106.40 |
No. Observations: | 23 | AIC: | 216.8 |
Df Residuals: | 21 | BIC: | 219.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -680.1928 | 186.483 | -3.647 | 0.002 | -1068.006 -292.380 |
expression | 67.7121 | 16.610 | 4.077 | 0.001 | 33.170 102.254 |
Omnibus: | 3.699 | Durbin-Watson: | 1.828 |
Prob(Omnibus): | 0.157 | Jarque-Bera (JB): | 1.406 |
Skew: | 0.004 | Prob(JB): | 0.495 |
Kurtosis: | 1.789 | Cond. No. | 391. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.432 | 0.523 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.326 |
Method: | Least Squares | F-statistic: | 3.255 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0635 |
Time: | 04:28:12 | Log-Likelihood: | -70.535 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 371.1517 | 484.275 | 0.766 | 0.460 | -694.731 1437.035 |
C(dose)[T.1] | -117.8067 | 768.293 | -0.153 | 0.881 | -1808.808 1573.194 |
expression | -26.2838 | 41.896 | -0.627 | 0.543 | -118.497 65.929 |
expression:C(dose)[T.1] | 14.5163 | 66.256 | 0.219 | 0.831 | -131.312 160.344 |
Omnibus: | 3.414 | Durbin-Watson: | 0.608 |
Prob(Omnibus): | 0.181 | Jarque-Bera (JB): | 2.225 |
Skew: | -0.937 | Prob(JB): | 0.329 |
Kurtosis: | 2.781 | Cond. No. | 1.42e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.468 |
Model: | OLS | Adj. R-squared: | 0.379 |
Method: | Least Squares | F-statistic: | 5.277 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0227 |
Time: | 04:28:12 | Log-Likelihood: | -70.567 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 304.0786 | 360.045 | 0.845 | 0.415 | -480.393 1088.550 |
C(dose)[T.1] | 50.4849 | 15.587 | 3.239 | 0.007 | 16.523 84.446 |
expression | -20.4794 | 31.143 | -0.658 | 0.523 | -88.333 47.374 |
Omnibus: | 3.915 | Durbin-Watson: | 0.614 |
Prob(Omnibus): | 0.141 | Jarque-Bera (JB): | 2.435 |
Skew: | -0.986 | Prob(JB): | 0.296 |
Kurtosis: | 2.933 | Cond. No. | 546. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:28:12 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.074 |
Method: | Least Squares | F-statistic: | 0.03685 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.851 |
Time: | 04:28:12 | Log-Likelihood: | -75.279 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 184.0652 | 471.055 | 0.391 | 0.702 | -833.588 1201.718 |
expression | -7.8003 | 40.637 | -0.192 | 0.851 | -95.591 79.991 |
Omnibus: | 0.673 | Durbin-Watson: | 1.631 |
Prob(Omnibus): | 0.714 | Jarque-Bera (JB): | 0.607 |
Skew: | 0.052 | Prob(JB): | 0.738 |
Kurtosis: | 2.020 | Cond. No. | 542. |