AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.431 | 0.519 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.14 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000115 |
Time: | 04:15:44 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 15.8629 | 77.725 | 0.204 | 0.840 | -146.817 178.543 |
C(dose)[T.1] | 5.0791 | 204.804 | 0.025 | 0.980 | -423.580 433.738 |
expression | 4.6023 | 9.300 | 0.495 | 0.626 | -14.862 24.066 |
expression:C(dose)[T.1] | 4.6873 | 22.341 | 0.210 | 0.836 | -42.073 51.447 |
Omnibus: | 0.022 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.989 | Jarque-Bera (JB): | 0.104 |
Skew: | -0.033 | Prob(JB): | 0.950 |
Kurtosis: | 2.678 | Cond. No. | 484. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.29e-05 |
Time: | 04:15:44 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 9.0962 | 69.007 | 0.132 | 0.896 | -134.849 153.042 |
C(dose)[T.1] | 47.9722 | 11.922 | 4.024 | 0.001 | 23.104 72.840 |
expression | 5.4145 | 8.251 | 0.656 | 0.519 | -11.797 22.626 |
Omnibus: | 0.003 | Durbin-Watson: | 1.848 |
Prob(Omnibus): | 0.999 | Jarque-Bera (JB): | 0.180 |
Skew: | 0.004 | Prob(JB): | 0.914 |
Kurtosis: | 2.566 | Cond. No. | 144. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:15:44 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.378 |
Model: | OLS | Adj. R-squared: | 0.349 |
Method: | Least Squares | F-statistic: | 12.78 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00179 |
Time: | 04:15:44 | Log-Likelihood: | -107.64 |
No. Observations: | 23 | AIC: | 219.3 |
Df Residuals: | 21 | BIC: | 221.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -168.4501 | 69.654 | -2.418 | 0.025 | -313.304 -23.596 |
expression | 28.1828 | 7.884 | 3.575 | 0.002 | 11.788 44.578 |
Omnibus: | 1.663 | Durbin-Watson: | 1.830 |
Prob(Omnibus): | 0.435 | Jarque-Bera (JB): | 0.977 |
Skew: | -0.003 | Prob(JB): | 0.613 |
Kurtosis: | 1.990 | Cond. No. | 110. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.167 | 0.100 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.564 |
Model: | OLS | Adj. R-squared: | 0.445 |
Method: | Least Squares | F-statistic: | 4.749 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0232 |
Time: | 04:15:44 | Log-Likelihood: | -69.069 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 11 | BIC: | 149.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -47.5448 | 544.203 | -0.087 | 0.932 | -1245.327 1150.238 |
C(dose)[T.1] | -18.3872 | 554.850 | -0.033 | 0.974 | -1239.604 1202.830 |
expression | 12.7512 | 60.344 | 0.211 | 0.837 | -120.064 145.566 |
expression:C(dose)[T.1] | 6.4341 | 61.396 | 0.105 | 0.918 | -128.698 141.566 |
Omnibus: | 1.164 | Durbin-Watson: | 1.097 |
Prob(Omnibus): | 0.559 | Jarque-Bera (JB): | 0.837 |
Skew: | -0.251 | Prob(JB): | 0.658 |
Kurtosis: | 1.957 | Cond. No. | 1.18e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.564 |
Model: | OLS | Adj. R-squared: | 0.491 |
Method: | Least Squares | F-statistic: | 7.758 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00688 |
Time: | 04:15:44 | Log-Likelihood: | -69.076 |
No. Observations: | 15 | AIC: | 144.2 |
Df Residuals: | 12 | BIC: | 146.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -103.5869 | 96.637 | -1.072 | 0.305 | -314.142 106.968 |
C(dose)[T.1] | 39.7361 | 14.975 | 2.653 | 0.021 | 7.107 72.365 |
expression | 18.9666 | 10.657 | 1.780 | 0.100 | -4.254 42.187 |
Omnibus: | 1.334 | Durbin-Watson: | 1.072 |
Prob(Omnibus): | 0.513 | Jarque-Bera (JB): | 0.870 |
Skew: | -0.227 | Prob(JB): | 0.647 |
Kurtosis: | 1.911 | Cond. No. | 131. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:15:44 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.308 |
Model: | OLS | Adj. R-squared: | 0.255 |
Method: | Least Squares | F-statistic: | 5.786 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0318 |
Time: | 04:15:44 | Log-Likelihood: | -72.539 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 13 | BIC: | 150.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -175.5755 | 112.250 | -1.564 | 0.142 | -418.077 66.926 |
expression | 29.0047 | 12.058 | 2.405 | 0.032 | 2.955 55.055 |
Omnibus: | 0.161 | Durbin-Watson: | 1.673 |
Prob(Omnibus): | 0.922 | Jarque-Bera (JB): | 0.267 |
Skew: | 0.198 | Prob(JB): | 0.875 |
Kurtosis: | 2.481 | Cond. No. | 125. |