AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.203 0.286 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 12.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.86e-05
Time: 04:44:11 Log-Likelihood: -100.32
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -126.4560 167.572 -0.755 0.460 -477.188 224.276
C(dose)[T.1] 149.4935 318.804 0.469 0.644 -517.770 816.757
expression 20.9280 19.399 1.079 0.294 -19.674 61.530
expression:C(dose)[T.1] -11.7540 35.252 -0.333 0.742 -85.537 62.029
Omnibus: 0.659 Durbin-Watson: 1.498
Prob(Omnibus): 0.719 Jarque-Bera (JB): 0.677
Skew: -0.147 Prob(JB): 0.713
Kurtosis: 2.213 Cond. No. 795.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.58e-05
Time: 04:44:11 Log-Likelihood: -100.39
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -95.7289 136.812 -0.700 0.492 -381.113 189.655
C(dose)[T.1] 43.2803 12.514 3.459 0.002 17.177 69.384
expression 17.3686 15.833 1.097 0.286 -15.659 50.397
Omnibus: 0.648 Durbin-Watson: 1.642
Prob(Omnibus): 0.723 Jarque-Bera (JB): 0.661
Skew: -0.116 Prob(JB): 0.719
Kurtosis: 2.203 Cond. No. 292.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:11 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.471
Model: OLS Adj. R-squared: 0.446
Method: Least Squares F-statistic: 18.70
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000299
Time: 04:44:11 Log-Likelihood: -105.78
No. Observations: 23 AIC: 215.6
Df Residuals: 21 BIC: 217.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -432.4779 118.572 -3.647 0.002 -679.061 -185.895
expression 57.4881 13.295 4.324 0.000 29.839 85.137
Omnibus: 0.965 Durbin-Watson: 1.555
Prob(Omnibus): 0.617 Jarque-Bera (JB): 0.769
Skew: -0.054 Prob(JB): 0.681
Kurtosis: 2.111 Cond. No. 204.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.136 0.719 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.478
Model: OLS Adj. R-squared: 0.336
Method: Least Squares F-statistic: 3.357
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0590
Time: 04:44:11 Log-Likelihood: -70.425
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.2877 149.349 0.430 0.675 -264.428 393.003
C(dose)[T.1] 253.6873 297.218 0.854 0.412 -400.486 907.861
expression 0.3902 18.499 0.021 0.984 -40.327 41.107
expression:C(dose)[T.1] -26.6658 38.271 -0.697 0.500 -110.901 57.569
Omnibus: 2.816 Durbin-Watson: 0.684
Prob(Omnibus): 0.245 Jarque-Bera (JB): 1.923
Skew: -0.858 Prob(JB): 0.382
Kurtosis: 2.641 Cond. No. 355.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.008
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0262
Time: 04:44:11 Log-Likelihood: -70.749
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.4332 128.028 0.894 0.389 -164.516 393.382
C(dose)[T.1] 46.9455 16.800 2.794 0.016 10.341 83.550
expression -5.8402 15.844 -0.369 0.719 -40.361 28.680
Omnibus: 2.309 Durbin-Watson: 0.733
Prob(Omnibus): 0.315 Jarque-Bera (JB): 1.692
Skew: -0.780 Prob(JB): 0.429
Kurtosis: 2.475 Cond. No. 131.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.100
Model: OLS Adj. R-squared: 0.031
Method: Least Squares F-statistic: 1.449
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.250
Time: 04:44:11 Log-Likelihood: -74.507
No. Observations: 15 AIC: 153.0
Df Residuals: 13 BIC: 154.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 265.6753 143.219 1.855 0.086 -43.731 575.082
expression -21.9318 18.220 -1.204 0.250 -61.293 17.429
Omnibus: 2.172 Durbin-Watson: 1.188
Prob(Omnibus): 0.338 Jarque-Bera (JB): 0.996
Skew: -0.102 Prob(JB): 0.608
Kurtosis: 1.755 Cond. No. 119.