AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.052 | 0.823 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000130 |
Time: | 05:01:45 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.7561 | 538.553 | 0.182 | 0.858 | -1029.449 1224.961 |
C(dose)[T.1] | -261.8677 | 822.102 | -0.319 | 0.754 | -1982.547 1458.812 |
expression | -3.7611 | 46.510 | -0.081 | 0.936 | -101.109 93.586 |
expression:C(dose)[T.1] | 27.6127 | 71.673 | 0.385 | 0.704 | -122.402 177.627 |
Omnibus: | 0.389 | Durbin-Watson: | 1.831 |
Prob(Omnibus): | 0.823 | Jarque-Bera (JB): | 0.521 |
Skew: | 0.027 | Prob(JB): | 0.771 |
Kurtosis: | 2.265 | Cond. No. | 2.66e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.76e-05 |
Time: | 05:01:45 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -36.8740 | 400.962 | -0.092 | 0.928 | -873.266 799.518 |
C(dose)[T.1] | 54.8235 | 10.932 | 5.015 | 0.000 | 32.019 77.628 |
expression | 7.8666 | 34.626 | 0.227 | 0.823 | -64.362 80.095 |
Omnibus: | 0.269 | Durbin-Watson: | 1.866 |
Prob(Omnibus): | 0.874 | Jarque-Bera (JB): | 0.453 |
Skew: | 0.062 | Prob(JB): | 0.798 |
Kurtosis: | 2.324 | Cond. No. | 1.06e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.210 |
Model: | OLS | Adj. R-squared: | 0.172 |
Method: | Least Squares | F-statistic: | 5.576 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 05:01:45 | Log-Likelihood: | -110.40 |
No. Observations: | 23 | AIC: | 224.8 |
Df Residuals: | 21 | BIC: | 227.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1183.1503 | 467.326 | 2.532 | 0.019 | 211.293 2155.008 |
expression | -96.0504 | 40.675 | -2.361 | 0.028 | -180.640 -11.461 |
Omnibus: | 1.831 | Durbin-Watson: | 2.529 |
Prob(Omnibus): | 0.400 | Jarque-Bera (JB): | 1.393 |
Skew: | 0.409 | Prob(JB): | 0.498 |
Kurtosis: | 2.115 | Cond. No. | 843. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
18.422 | 0.001 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.785 |
Model: | OLS | Adj. R-squared: | 0.726 |
Method: | Least Squares | F-statistic: | 13.38 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000545 |
Time: | 05:01:45 | Log-Likelihood: | -63.774 |
No. Observations: | 15 | AIC: | 135.5 |
Df Residuals: | 11 | BIC: | 138.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1201.1396 | 508.226 | 2.363 | 0.038 | 82.542 2319.737 |
C(dose)[T.1] | 257.1517 | 636.952 | 0.404 | 0.694 | -1144.770 1659.073 |
expression | -100.5531 | 45.072 | -2.231 | 0.047 | -199.755 -1.351 |
expression:C(dose)[T.1] | -19.6719 | 56.699 | -0.347 | 0.735 | -144.465 105.121 |
Omnibus: | 2.760 | Durbin-Watson: | 1.490 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 0.925 |
Skew: | -0.523 | Prob(JB): | 0.630 |
Kurtosis: | 3.621 | Cond. No. | 1.98e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.783 |
Model: | OLS | Adj. R-squared: | 0.746 |
Method: | Least Squares | F-statistic: | 21.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 05:01:45 | Log-Likelihood: | -63.856 |
No. Observations: | 15 | AIC: | 133.7 |
Df Residuals: | 12 | BIC: | 135.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1341.2956 | 296.880 | 4.518 | 0.001 | 694.449 1988.142 |
C(dose)[T.1] | 36.1897 | 10.339 | 3.500 | 0.004 | 13.662 58.717 |
expression | -112.9841 | 26.324 | -4.292 | 0.001 | -170.338 -55.630 |
Omnibus: | 1.849 | Durbin-Watson: | 1.632 |
Prob(Omnibus): | 0.397 | Jarque-Bera (JB): | 0.490 |
Skew: | -0.392 | Prob(JB): | 0.783 |
Kurtosis: | 3.409 | Cond. No. | 681. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.561 |
Model: | OLS | Adj. R-squared: | 0.527 |
Method: | Least Squares | F-statistic: | 16.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00132 |
Time: | 05:01:45 | Log-Likelihood: | -69.133 |
No. Observations: | 15 | AIC: | 142.3 |
Df Residuals: | 13 | BIC: | 143.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1663.4106 | 385.514 | 4.315 | 0.001 | 830.559 2496.262 |
expression | -139.9889 | 34.375 | -4.072 | 0.001 | -214.251 -65.727 |
Omnibus: | 1.696 | Durbin-Watson: | 1.685 |
Prob(Omnibus): | 0.428 | Jarque-Bera (JB): | 0.909 |
Skew: | 0.134 | Prob(JB): | 0.635 |
Kurtosis: | 1.824 | Cond. No. | 647. |