AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.011 | 0.917 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.645 |
Method: | Least Squares | F-statistic: | 14.30 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 4.12e-05 |
Time: | 17:31:41 | Log-Likelihood: | -99.524 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 19 | BIC: | 211.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -18.5586 | 103.612 | -0.179 | 0.860 | -235.422 198.305 |
C(dose)[T.1] | 583.2168 | 323.567 | 1.802 | 0.087 | -94.018 1260.451 |
expression | 7.6204 | 10.834 | 0.703 | 0.490 | -15.054 30.295 |
expression:C(dose)[T.1] | -48.8042 | 29.661 | -1.645 | 0.116 | -110.885 13.276 |
Omnibus: | 1.303 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.521 | Jarque-Bera (JB): | 1.101 |
Skew: | 0.495 | Prob(JB): | 0.577 |
Kurtosis: | 2.589 | Cond. No. | 945. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.82e-05 |
Time: | 17:31:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 43.6125 | 100.511 | 0.434 | 0.669 | -166.050 253.275 |
C(dose)[T.1] | 51.6168 | 18.499 | 2.790 | 0.011 | 13.028 90.205 |
expression | 1.1096 | 10.507 | 0.106 | 0.917 | -20.807 23.026 |
Omnibus: | 0.249 | Durbin-Watson: | 1.896 |
Prob(Omnibus): | 0.883 | Jarque-Bera (JB): | 0.439 |
Skew: | 0.075 | Prob(JB): | 0.803 |
Kurtosis: | 2.340 | Cond. No. | 243. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 17:31:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.513 |
Model: | OLS | Adj. R-squared: | 0.490 |
Method: | Least Squares | F-statistic: | 22.10 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000122 |
Time: | 17:31:41 | Log-Likelihood: | -104.84 |
No. Observations: | 23 | AIC: | 213.7 |
Df Residuals: | 21 | BIC: | 215.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -197.3448 | 59.156 | -3.336 | 0.003 | -320.367 -74.323 |
expression | 26.9243 | 5.728 | 4.701 | 0.000 | 15.013 38.836 |
Omnibus: | 1.045 | Durbin-Watson: | 2.081 |
Prob(Omnibus): | 0.593 | Jarque-Bera (JB): | 0.810 |
Skew: | 0.435 | Prob(JB): | 0.667 |
Kurtosis: | 2.704 | Cond. No. | 122. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.198 | 0.664 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.488 |
Model: | OLS | Adj. R-squared: | 0.348 |
Method: | Least Squares | F-statistic: | 3.493 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0535 |
Time: | 17:31:41 | Log-Likelihood: | -70.281 |
No. Observations: | 15 | AIC: | 148.6 |
Df Residuals: | 11 | BIC: | 151.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 94.2221 | 115.503 | 0.816 | 0.432 | -159.999 348.444 |
C(dose)[T.1] | -95.9537 | 176.874 | -0.542 | 0.598 | -485.250 293.343 |
expression | -3.8129 | 16.354 | -0.233 | 0.820 | -39.808 32.182 |
expression:C(dose)[T.1] | 19.2039 | 23.852 | 0.805 | 0.438 | -33.293 71.701 |
Omnibus: | 2.378 | Durbin-Watson: | 0.948 |
Prob(Omnibus): | 0.304 | Jarque-Bera (JB): | 1.354 |
Skew: | -0.734 | Prob(JB): | 0.508 |
Kurtosis: | 2.886 | Cond. No. | 222. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 5.064 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0254 |
Time: | 17:31:41 | Log-Likelihood: | -70.710 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 30.7791 | 83.204 | 0.370 | 0.718 | -150.507 212.066 |
C(dose)[T.1] | 45.7395 | 17.440 | 2.623 | 0.022 | 7.741 83.738 |
expression | 5.2154 | 11.729 | 0.445 | 0.664 | -20.339 30.770 |
Omnibus: | 3.139 | Durbin-Watson: | 0.880 |
Prob(Omnibus): | 0.208 | Jarque-Bera (JB): | 2.000 |
Skew: | -0.889 | Prob(JB): | 0.368 |
Kurtosis: | 2.798 | Cond. No. | 81.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 17:31:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.147 |
Model: | OLS | Adj. R-squared: | 0.081 |
Method: | Least Squares | F-statistic: | 2.238 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.159 |
Time: | 17:31:41 | Log-Likelihood: | -74.109 |
No. Observations: | 15 | AIC: | 152.2 |
Df Residuals: | 13 | BIC: | 153.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -46.0289 | 93.850 | -0.490 | 0.632 | -248.780 156.722 |
expression | 18.9273 | 12.652 | 1.496 | 0.159 | -8.406 46.260 |
Omnibus: | 0.674 | Durbin-Watson: | 1.636 |
Prob(Omnibus): | 0.714 | Jarque-Bera (JB): | 0.298 |
Skew: | -0.333 | Prob(JB): | 0.862 |
Kurtosis: | 2.814 | Cond. No. | 75.5 |