AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.705 0.411 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 13.65
Date: Mon, 27 Jan 2025 Prob (F-statistic): 5.55e-05
Time: 23:12:23 Log-Likelihood: -99.892
No. Observations: 23 AIC: 207.8
Df Residuals: 19 BIC: 212.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.1690 82.133 0.964 0.347 -92.738 251.076
C(dose)[T.1] 305.7692 215.357 1.420 0.172 -144.978 756.516
expression -3.0987 10.170 -0.305 0.764 -24.384 18.187
expression:C(dose)[T.1] -28.6577 24.947 -1.149 0.265 -80.872 23.557
Omnibus: 0.564 Durbin-Watson: 1.929
Prob(Omnibus): 0.754 Jarque-Bera (JB): 0.655
Skew: 0.280 Prob(JB): 0.721
Kurtosis: 2.392 Cond. No. 501.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.50
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.00e-05
Time: 23:12:23 Log-Likelihood: -100.66
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.5315 75.635 1.554 0.136 -40.240 275.303
C(dose)[T.1] 58.6805 10.713 5.477 0.000 36.333 81.028
expression -7.8611 9.360 -0.840 0.411 -27.386 11.664
Omnibus: 0.944 Durbin-Watson: 1.975
Prob(Omnibus): 0.624 Jarque-Bera (JB): 0.758
Skew: 0.029 Prob(JB): 0.684
Kurtosis: 2.112 Cond. No. 150.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 23:12:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.152
Model: OLS Adj. R-squared: 0.112
Method: Least Squares F-statistic: 3.778
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0654
Time: 23:12:23 Log-Likelihood: -111.20
No. Observations: 23 AIC: 226.4
Df Residuals: 21 BIC: 228.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -109.5791 97.610 -1.123 0.274 -312.571 93.412
expression 22.5880 11.620 1.944 0.065 -1.578 46.754
Omnibus: 2.209 Durbin-Watson: 2.242
Prob(Omnibus): 0.331 Jarque-Bera (JB): 1.211
Skew: 0.197 Prob(JB): 0.546
Kurtosis: 1.947 Cond. No. 125.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.380 0.091 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.634
Model: OLS Adj. R-squared: 0.535
Method: Least Squares F-statistic: 6.361
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00926
Time: 23:12:23 Log-Likelihood: -67.754
No. Observations: 15 AIC: 143.5
Df Residuals: 11 BIC: 146.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 123.4098 77.260 1.597 0.138 -46.638 293.458
C(dose)[T.1] 239.0083 134.230 1.781 0.103 -56.429 534.446
expression -9.0185 12.346 -0.730 0.480 -36.193 18.156
expression:C(dose)[T.1] -29.3266 21.063 -1.392 0.191 -75.685 17.032
Omnibus: 2.257 Durbin-Watson: 1.434
Prob(Omnibus): 0.324 Jarque-Bera (JB): 1.325
Skew: -0.723 Prob(JB): 0.516
Kurtosis: 2.834 Cond. No. 163.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.570
Model: OLS Adj. R-squared: 0.498
Method: Least Squares F-statistic: 7.951
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00633
Time: 23:12:23 Log-Likelihood: -68.972
No. Observations: 15 AIC: 143.9
Df Residuals: 12 BIC: 146.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 185.9597 65.269 2.849 0.015 43.752 328.168
C(dose)[T.1] 53.0663 14.061 3.774 0.003 22.429 83.704
expression -19.0953 10.387 -1.838 0.091 -41.726 3.535
Omnibus: 1.908 Durbin-Watson: 0.930
Prob(Omnibus): 0.385 Jarque-Bera (JB): 1.158
Skew: -0.670 Prob(JB): 0.561
Kurtosis: 2.763 Cond. No. 61.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 23:12:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.059
Model: OLS Adj. R-squared: -0.013
Method: Least Squares F-statistic: 0.8218
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.381
Time: 23:12:23 Log-Likelihood: -74.840
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 177.2034 92.674 1.912 0.078 -23.006 377.413
expression -13.2274 14.591 -0.907 0.381 -44.749 18.294
Omnibus: 0.297 Durbin-Watson: 1.942
Prob(Omnibus): 0.862 Jarque-Bera (JB): 0.449
Skew: -0.003 Prob(JB): 0.799
Kurtosis: 2.152 Cond. No. 61.2