AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.027 0.872 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.595
Method: Least Squares F-statistic: 11.79
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000137
Time: 04:53:07 Log-Likelihood: -101.01
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.2872 80.797 0.622 0.541 -118.822 219.397
C(dose)[T.1] 5.6279 200.439 0.028 0.978 -413.895 425.151
expression 0.5169 10.619 0.049 0.962 -21.709 22.743
expression:C(dose)[T.1] 6.1447 25.927 0.237 0.815 -48.121 60.411
Omnibus: 0.431 Durbin-Watson: 1.897
Prob(Omnibus): 0.806 Jarque-Bera (JB): 0.550
Skew: 0.091 Prob(JB): 0.760
Kurtosis: 2.265 Cond. No. 403.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 04:53:07 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.4674 71.991 0.590 0.562 -107.704 192.639
C(dose)[T.1] 53.0828 8.901 5.964 0.000 34.516 71.649
expression 1.5477 9.456 0.164 0.872 -18.178 21.273
Omnibus: 0.349 Durbin-Watson: 1.882
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.501
Skew: 0.060 Prob(JB): 0.778
Kurtosis: 2.287 Cond. No. 129.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:53:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.026
Model: OLS Adj. R-squared: -0.020
Method: Least Squares F-statistic: 0.5660
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.460
Time: 04:53:07 Log-Likelihood: -112.80
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -7.6173 116.308 -0.065 0.948 -249.492 234.258
expression 11.3944 15.146 0.752 0.460 -20.103 42.892
Omnibus: 2.403 Durbin-Watson: 2.573
Prob(Omnibus): 0.301 Jarque-Bera (JB): 1.312
Skew: 0.246 Prob(JB): 0.519
Kurtosis: 1.938 Cond. No. 128.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.317 0.584 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 3.177
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0673
Time: 04:53:07 Log-Likelihood: -70.620
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.8369 139.268 1.040 0.321 -161.690 451.364
C(dose)[T.1] -4.1275 340.638 -0.012 0.991 -753.866 745.611
expression -9.7337 17.449 -0.558 0.588 -48.139 28.671
expression:C(dose)[T.1] 6.7754 41.960 0.161 0.875 -85.577 99.128
Omnibus: 2.293 Durbin-Watson: 0.971
Prob(Omnibus): 0.318 Jarque-Bera (JB): 1.620
Skew: -0.774 Prob(JB): 0.445
Kurtosis: 2.556 Cond. No. 409.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 5.172
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0240
Time: 04:53:07 Log-Likelihood: -70.638
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.5190 121.498 1.115 0.287 -129.203 400.241
C(dose)[T.1] 50.8124 15.799 3.216 0.007 16.390 85.235
expression -8.5620 15.211 -0.563 0.584 -41.704 24.580
Omnibus: 2.695 Durbin-Watson: 0.948
Prob(Omnibus): 0.260 Jarque-Bera (JB): 1.824
Skew: -0.836 Prob(JB): 0.402
Kurtosis: 2.651 Cond. No. 129.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:53:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.0002795
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.987
Time: 04:53:07 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.0264 158.250 0.575 0.575 -250.853 432.905
expression 0.3279 19.610 0.017 0.987 -42.037 42.693
Omnibus: 0.545 Durbin-Watson: 1.618
Prob(Omnibus): 0.761 Jarque-Bera (JB): 0.559
Skew: 0.042 Prob(JB): 0.756
Kurtosis: 2.058 Cond. No. 128.