AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.452 0.509 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000113
Time: 04:05:18 Log-Likelihood: -100.78
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.0101 169.659 0.914 0.372 -200.091 510.111
C(dose)[T.1] 3.5384 222.293 0.016 0.987 -461.725 468.802
expression -13.8851 23.355 -0.595 0.559 -62.767 34.997
expression:C(dose)[T.1] 6.8272 30.655 0.223 0.826 -57.333 70.988
Omnibus: 0.104 Durbin-Watson: 1.957
Prob(Omnibus): 0.950 Jarque-Bera (JB): 0.323
Skew: -0.059 Prob(JB): 0.851
Kurtosis: 2.431 Cond. No. 497.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.27e-05
Time: 04:05:18 Log-Likelihood: -100.81
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.2413 107.348 1.176 0.253 -97.684 350.166
C(dose)[T.1] 53.0066 8.686 6.102 0.000 34.887 71.126
expression -9.9223 14.764 -0.672 0.509 -40.719 20.874
Omnibus: 0.035 Durbin-Watson: 1.927
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.216
Skew: -0.070 Prob(JB): 0.898
Kurtosis: 2.546 Cond. No. 183.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:05:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.029
Method: Least Squares F-statistic: 0.3811
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.544
Time: 04:05:18 Log-Likelihood: -112.90
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 188.5424 176.422 1.069 0.297 -178.348 555.432
expression -15.0232 24.335 -0.617 0.544 -65.631 35.584
Omnibus: 3.609 Durbin-Watson: 2.631
Prob(Omnibus): 0.165 Jarque-Bera (JB): 1.589
Skew: 0.264 Prob(JB): 0.452
Kurtosis: 1.825 Cond. No. 182.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.076 0.787 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 3.603
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0495
Time: 04:05:18 Log-Likelihood: -70.167
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 157.0280 93.092 1.687 0.120 -47.867 361.923
C(dose)[T.1] -55.9093 108.409 -0.516 0.616 -294.515 182.697
expression -14.6606 15.116 -0.970 0.353 -47.930 18.609
expression:C(dose)[T.1] 17.3628 17.852 0.973 0.352 -21.930 56.655
Omnibus: 2.372 Durbin-Watson: 0.645
Prob(Omnibus): 0.305 Jarque-Bera (JB): 1.593
Skew: -0.779 Prob(JB): 0.451
Kurtosis: 2.650 Cond. No. 124.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.954
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0270
Time: 04:05:18 Log-Likelihood: -70.786
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.9521 50.361 1.607 0.134 -28.775 190.679
C(dose)[T.1] 48.3709 15.973 3.028 0.010 13.569 83.173
expression -2.2128 8.024 -0.276 0.787 -19.696 15.270
Omnibus: 2.436 Durbin-Watson: 0.796
Prob(Omnibus): 0.296 Jarque-Bera (JB): 1.716
Skew: -0.799 Prob(JB): 0.424
Kurtosis: 2.564 Cond. No. 40.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:05:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.034
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.4526
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.513
Time: 04:05:18 Log-Likelihood: -75.043
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.6759 60.304 2.217 0.045 3.396 263.955
expression -6.7668 10.058 -0.673 0.513 -28.497 14.963
Omnibus: 1.234 Durbin-Watson: 1.620
Prob(Omnibus): 0.539 Jarque-Bera (JB): 0.854
Skew: 0.245 Prob(JB): 0.653
Kurtosis: 1.939 Cond. No. 37.2