AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.452  |   0.509  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.658 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.604 | 
  | Method: |              Least Squares |     F-statistic:        |     12.17 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  0.000113 | 
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -100.78 | 
  | No. Observations: |           23 |         AIC:                |     209.6 | 
  | Df Residuals: |               19 |         BIC:                |     214.1 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  155.0101 |    169.659 |      0.914 |   0.372 |   -200.091   510.111 | 
  | C(dose)[T.1] |                 3.5384 |    222.293 |      0.016 |   0.987 |   -461.725   468.802 | 
  | expression |                 -13.8851 |     23.355 |     -0.595 |   0.559 |    -62.767    34.997 | 
  | expression:C(dose)[T.1] |      6.8272 |     30.655 |      0.223 |   0.826 |    -57.333    70.988 | 
  | Omnibus: |         0.104 |    Durbin-Watson:      |     1.957 | 
  | Prob(Omnibus): |   0.950 |    Jarque-Bera (JB):   |     0.323 | 
  | Skew: |           -0.059 |    Prob(JB):           |     0.851 | 
  | Kurtosis: |        2.431 |    Cond. No.           |      497. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.657 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.622 | 
  | Method: |              Least Squares |     F-statistic:        |     19.14 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.27e-05 | 
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -100.81 | 
  | No. Observations: |           23 |         AIC:                |     207.6 | 
  | Df Residuals: |               20 |         BIC:                |     211.0 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       126.2413 |    107.348 |      1.176 |   0.253 |    -97.684   350.166 | 
  | C(dose)[T.1] |     53.0066 |      8.686 |      6.102 |   0.000 |     34.887    71.126 | 
  | expression |       -9.9223 |     14.764 |     -0.672 |   0.509 |    -40.719    20.874 | 
  | Omnibus: |         0.035 |    Durbin-Watson:      |     1.927 | 
  | Prob(Omnibus): |   0.983 |    Jarque-Bera (JB):   |     0.216 | 
  | Skew: |           -0.070 |    Prob(JB):           |     0.898 | 
  | Kurtosis: |        2.546 |    Cond. No.           |      183. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.018 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.029 | 
  | Method: |              Least Squares |     F-statistic:        |    0.3811 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.544 |  
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -112.90 | 
  | No. Observations: |           23 |         AIC:                |     229.8 | 
  | Df Residuals: |               21 |         BIC:                |     232.1 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     188.5424 |    176.422 |      1.069 |   0.297 |   -178.348   555.432 | 
  | expression |    -15.0232 |     24.335 |     -0.617 |   0.544 |    -65.631    35.584 | 
  | Omnibus: |         3.609 |    Durbin-Watson:      |     2.631 | 
  | Prob(Omnibus): |   0.165 |    Jarque-Bera (JB):   |     1.589 | 
  | Skew: |            0.264 |    Prob(JB):           |     0.452 | 
  | Kurtosis: |        1.825 |    Cond. No.           |      182. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.076  |   0.787  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.496 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.358 | 
  | Method: |              Least Squares |     F-statistic:        |     3.603 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0495 |  
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -70.167 | 
  | No. Observations: |           15 |         AIC:                |     148.3 | 
  | Df Residuals: |               11 |         BIC:                |     151.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  157.0280 |     93.092 |      1.687 |   0.120 |    -47.867   361.923 | 
  | C(dose)[T.1] |               -55.9093 |    108.409 |     -0.516 |   0.616 |   -294.515   182.697 | 
  | expression |                 -14.6606 |     15.116 |     -0.970 |   0.353 |    -47.930    18.609 | 
  | expression:C(dose)[T.1] |     17.3628 |     17.852 |      0.973 |   0.352 |    -21.930    56.655 | 
  | Omnibus: |         2.372 |    Durbin-Watson:      |     0.645 | 
  | Prob(Omnibus): |   0.305 |    Jarque-Bera (JB):   |     1.593 | 
  | Skew: |           -0.779 |    Prob(JB):           |     0.451 | 
  | Kurtosis: |        2.650 |    Cond. No.           |      124. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.452 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.361 | 
  | Method: |              Least Squares |     F-statistic:        |     4.954 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0270 |  
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -70.786 | 
  | No. Observations: |           15 |         AIC:                |     147.6 | 
  | Df Residuals: |               12 |         BIC:                |     149.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        80.9521 |     50.361 |      1.607 |   0.134 |    -28.775   190.679 | 
  | C(dose)[T.1] |     48.3709 |     15.973 |      3.028 |   0.010 |     13.569    83.173 | 
  | expression |       -2.2128 |      8.024 |     -0.276 |   0.787 |    -19.696    15.270 | 
  | Omnibus: |         2.436 |    Durbin-Watson:      |     0.796 | 
  | Prob(Omnibus): |   0.296 |    Jarque-Bera (JB):   |     1.716 | 
  | Skew: |           -0.799 |    Prob(JB):           |     0.424 | 
  | Kurtosis: |        2.564 |    Cond. No.           |      40.0 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.034 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.041 | 
  | Method: |              Least Squares |     F-statistic:        |    0.4526 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.513 |  
  | Time: |                  00:13:08 |        Log-Likelihood:     |   -75.043 | 
  | No. Observations: |           15 |         AIC:                |     154.1 | 
  | Df Residuals: |               13 |         BIC:                |     155.5 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     133.6759 |     60.304 |      2.217 |   0.045 |      3.396   263.955 | 
  | expression |     -6.7668 |     10.058 |     -0.673 |   0.513 |    -28.497    14.963 | 
  | Omnibus: |         1.234 |    Durbin-Watson:      |     1.620 | 
  | Prob(Omnibus): |   0.539 |    Jarque-Bera (JB):   |     0.854 | 
  | Skew: |            0.245 |    Prob(JB):           |     0.653 | 
  | Kurtosis: |        1.939 |    Cond. No.           |      37.2 |