AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.027 | 0.870 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.651 |
| Model: | OLS | Adj. R-squared: | 0.595 |
| Method: | Least Squares | F-statistic: | 11.79 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.000137 |
| Time: | 19:56:05 | Log-Likelihood: | -101.01 |
| No. Observations: | 23 | AIC: | 210.0 |
| Df Residuals: | 19 | BIC: | 214.6 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 30.7216 | 85.459 | 0.359 | 0.723 | -148.146 209.590 |
| C(dose)[T.1] | 84.0129 | 132.263 | 0.635 | 0.533 | -192.817 360.843 |
| expression | 3.6191 | 13.134 | 0.276 | 0.786 | -23.870 31.108 |
| expression:C(dose)[T.1] | -4.7031 | 20.080 | -0.234 | 0.817 | -46.731 37.325 |
| Omnibus: | 0.345 | Durbin-Watson: | 1.989 |
| Prob(Omnibus): | 0.841 | Jarque-Bera (JB): | 0.499 |
| Skew: | 0.057 | Prob(JB): | 0.779 |
| Kurtosis: | 2.288 | Cond. No. | 249. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.650 |
| Model: | OLS | Adj. R-squared: | 0.614 |
| Method: | Least Squares | F-statistic: | 18.53 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 2.80e-05 |
| Time: | 19:56:05 | Log-Likelihood: | -101.05 |
| No. Observations: | 23 | AIC: | 208.1 |
| Df Residuals: | 20 | BIC: | 211.5 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 43.7788 | 63.223 | 0.692 | 0.497 | -88.102 175.659 |
| C(dose)[T.1] | 53.1080 | 8.872 | 5.986 | 0.000 | 34.601 71.615 |
| expression | 1.6071 | 9.697 | 0.166 | 0.870 | -18.621 21.835 |
| Omnibus: | 0.307 | Durbin-Watson: | 1.903 |
| Prob(Omnibus): | 0.858 | Jarque-Bera (JB): | 0.476 |
| Skew: | 0.054 | Prob(JB): | 0.788 |
| Kurtosis: | 2.304 | Cond. No. | 97.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.632 |
| Method: | Least Squares | F-statistic: | 38.84 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 3.51e-06 |
| Time: | 19:56:05 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 206.1 |
| Df Residuals: | 21 | BIC: | 208.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
| C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
| Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
| Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
| Skew: | 0.060 | Prob(JB): | 0.785 |
| Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.022 |
| Model: | OLS | Adj. R-squared: | -0.025 |
| Method: | Least Squares | F-statistic: | 0.4652 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.503 |
| Time: | 19:56:06 | Log-Likelihood: | -112.85 |
| No. Observations: | 23 | AIC: | 229.7 |
| Df Residuals: | 21 | BIC: | 232.0 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 9.8578 | 102.671 | 0.096 | 0.924 | -203.659 223.374 |
| expression | 10.6529 | 15.618 | 0.682 | 0.503 | -21.827 43.133 |
| Omnibus: | 3.032 | Durbin-Watson: | 2.428 |
| Prob(Omnibus): | 0.220 | Jarque-Bera (JB): | 1.526 |
| Skew: | 0.297 | Prob(JB): | 0.466 |
| Kurtosis: | 1.887 | Cond. No. | 96.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.249 | 0.627 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.466 |
| Model: | OLS | Adj. R-squared: | 0.320 |
| Method: | Least Squares | F-statistic: | 3.197 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0663 |
| Time: | 19:56:06 | Log-Likelihood: | -70.598 |
| No. Observations: | 15 | AIC: | 149.2 |
| Df Residuals: | 11 | BIC: | 152.0 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 49.2139 | 356.655 | 0.138 | 0.893 | -735.779 834.207 |
| C(dose)[T.1] | 191.6918 | 414.421 | 0.463 | 0.653 | -720.443 1103.827 |
| expression | 2.7812 | 54.429 | 0.051 | 0.960 | -117.016 122.578 |
| expression:C(dose)[T.1] | -21.8789 | 63.335 | -0.345 | 0.736 | -161.279 117.521 |
| Omnibus: | 3.029 | Durbin-Watson: | 0.792 |
| Prob(Omnibus): | 0.220 | Jarque-Bera (JB): | 2.075 |
| Skew: | -0.894 | Prob(JB): | 0.354 |
| Kurtosis: | 2.648 | Cond. No. | 507. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.460 |
| Model: | OLS | Adj. R-squared: | 0.370 |
| Method: | Least Squares | F-statistic: | 5.111 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0248 |
| Time: | 19:56:06 | Log-Likelihood: | -70.679 |
| No. Observations: | 15 | AIC: | 147.4 |
| Df Residuals: | 12 | BIC: | 149.5 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 155.0344 | 175.827 | 0.882 | 0.395 | -228.060 538.129 |
| C(dose)[T.1] | 48.6422 | 15.618 | 3.114 | 0.009 | 14.613 82.671 |
| expression | -13.3768 | 26.791 | -0.499 | 0.627 | -71.750 44.996 |
| Omnibus: | 3.603 | Durbin-Watson: | 0.828 |
| Prob(Omnibus): | 0.165 | Jarque-Bera (JB): | 2.415 |
| Skew: | -0.974 | Prob(JB): | 0.299 |
| Kurtosis: | 2.740 | Cond. No. | 152. |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.449 |
| Model: | OLS | Adj. R-squared: | 0.406 |
| Method: | Least Squares | F-statistic: | 10.58 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.00629 |
| Time: | 19:56:06 | Log-Likelihood: | -70.833 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 13 | BIC: | 147.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
| C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
| Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
| Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
| Skew: | -0.843 | Prob(JB): | 0.393 |
| Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.023 |
| Model: | OLS | Adj. R-squared: | -0.052 |
| Method: | Least Squares | F-statistic: | 0.3127 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.586 |
| Time: | 19:56:06 | Log-Likelihood: | -75.122 |
| No. Observations: | 15 | AIC: | 154.2 |
| Df Residuals: | 13 | BIC: | 155.7 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 219.6817 | 225.578 | 0.974 | 0.348 | -267.649 707.012 |
| expression | -19.3067 | 34.526 | -0.559 | 0.586 | -93.897 55.283 |
| Omnibus: | 0.218 | Durbin-Watson: | 1.730 |
| Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.407 |
| Skew: | -0.065 | Prob(JB): | 0.816 |
| Kurtosis: | 2.204 | Cond. No. | 150. |