AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.064 | 0.315 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 12.71 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 8.68e-05 |
Time: | 17:27:00 | Log-Likelihood: | -100.45 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 2.3976 | 74.039 | 0.032 | 0.975 | -152.568 157.363 |
C(dose)[T.1] | 70.7296 | 87.513 | 0.808 | 0.429 | -112.436 253.896 |
expression | 11.6374 | 16.574 | 0.702 | 0.491 | -23.053 46.328 |
expression:C(dose)[T.1] | -3.6690 | 19.729 | -0.186 | 0.854 | -44.962 37.624 |
Omnibus: | 0.206 | Durbin-Watson: | 2.129 |
Prob(Omnibus): | 0.902 | Jarque-Bera (JB): | 0.357 |
Skew: | 0.181 | Prob(JB): | 0.836 |
Kurtosis: | 2.509 | Cond. No. | 132. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 20.01 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.69e-05 |
Time: | 17:27:00 | Log-Likelihood: | -100.47 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.9264 | 39.493 | 0.353 | 0.728 | -68.454 96.307 |
C(dose)[T.1] | 54.5380 | 8.624 | 6.324 | 0.000 | 36.548 72.528 |
expression | 9.0479 | 8.771 | 1.032 | 0.315 | -9.248 27.343 |
Omnibus: | 0.254 | Durbin-Watson: | 2.119 |
Prob(Omnibus): | 0.881 | Jarque-Bera (JB): | 0.403 |
Skew: | 0.199 | Prob(JB): | 0.817 |
Kurtosis: | 2.487 | Cond. No. | 43.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 17:27:00 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.01130 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.916 |
Time: | 17:27:00 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 72.8642 | 64.864 | 1.123 | 0.274 | -62.027 207.755 |
expression | 1.5616 | 14.688 | 0.106 | 0.916 | -28.984 32.107 |
Omnibus: | 3.228 | Durbin-Watson: | 2.502 |
Prob(Omnibus): | 0.199 | Jarque-Bera (JB): | 1.555 |
Skew: | 0.290 | Prob(JB): | 0.460 |
Kurtosis: | 1.865 | Cond. No. | 41.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.521 | 0.484 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.485 |
Model: | OLS | Adj. R-squared: | 0.345 |
Method: | Least Squares | F-statistic: | 3.456 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0549 |
Time: | 17:27:00 | Log-Likelihood: | -70.320 |
No. Observations: | 15 | AIC: | 148.6 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.1227 | 124.855 | 0.233 | 0.820 | -245.682 303.927 |
C(dose)[T.1] | -81.6920 | 239.878 | -0.341 | 0.740 | -609.660 446.276 |
expression | 7.6897 | 24.956 | 0.308 | 0.764 | -47.237 62.617 |
expression:C(dose)[T.1] | 25.2670 | 47.011 | 0.537 | 0.602 | -78.204 128.738 |
Omnibus: | 2.384 | Durbin-Watson: | 1.109 |
Prob(Omnibus): | 0.304 | Jarque-Bera (JB): | 1.396 |
Skew: | -0.744 | Prob(JB): | 0.498 |
Kurtosis: | 2.851 | Cond. No. | 195. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 5.358 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0217 |
Time: | 17:27:00 | Log-Likelihood: | -70.514 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -6.3457 | 102.802 | -0.062 | 0.952 | -230.331 217.640 |
C(dose)[T.1] | 46.9396 | 15.722 | 2.986 | 0.011 | 12.683 81.196 |
expression | 14.8098 | 20.513 | 0.722 | 0.484 | -29.884 59.504 |
Omnibus: | 2.386 | Durbin-Watson: | 1.075 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.642 |
Skew: | -0.786 | Prob(JB): | 0.440 |
Kurtosis: | 2.608 | Cond. No. | 70.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 17:27:00 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.079 |
Model: | OLS | Adj. R-squared: | 0.009 |
Method: | Least Squares | F-statistic: | 1.120 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.309 |
Time: | 17:27:00 | Log-Likelihood: | -74.680 |
No. Observations: | 15 | AIC: | 153.4 |
Df Residuals: | 13 | BIC: | 154.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -42.9545 | 129.458 | -0.332 | 0.745 | -322.631 236.722 |
expression | 26.9857 | 25.498 | 1.058 | 0.309 | -28.100 82.071 |
Omnibus: | 0.526 | Durbin-Watson: | 1.831 |
Prob(Omnibus): | 0.769 | Jarque-Bera (JB): | 0.550 |
Skew: | -0.019 | Prob(JB): | 0.760 |
Kurtosis: | 2.063 | Cond. No. | 70.0 |