AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.353 | 0.031 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.755 |
Model: | OLS | Adj. R-squared: | 0.717 |
Method: | Least Squares | F-statistic: | 19.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.98e-06 |
Time: | 03:32:16 | Log-Likelihood: | -96.922 |
No. Observations: | 23 | AIC: | 201.8 |
Df Residuals: | 19 | BIC: | 206.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -138.8637 | 219.880 | -0.632 | 0.535 | -599.078 321.351 |
C(dose)[T.1] | -499.8780 | 350.702 | -1.425 | 0.170 | -1233.906 234.149 |
expression | 20.7499 | 23.624 | 0.878 | 0.391 | -28.697 70.196 |
expression:C(dose)[T.1] | 59.3682 | 37.657 | 1.577 | 0.131 | -19.449 138.186 |
Omnibus: | 2.035 | Durbin-Watson: | 1.780 |
Prob(Omnibus): | 0.362 | Jarque-Bera (JB): | 1.133 |
Skew: | 0.541 | Prob(JB): | 0.567 |
Kurtosis: | 3.108 | Cond. No. | 1.09e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.723 |
Model: | OLS | Adj. R-squared: | 0.695 |
Method: | Least Squares | F-statistic: | 26.12 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.65e-06 |
Time: | 03:32:16 | Log-Likelihood: | -98.335 |
No. Observations: | 23 | AIC: | 202.7 |
Df Residuals: | 20 | BIC: | 206.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -356.2755 | 177.506 | -2.007 | 0.058 | -726.546 13.994 |
C(dose)[T.1] | 52.8912 | 7.792 | 6.788 | 0.000 | 36.638 69.144 |
expression | 44.1156 | 19.068 | 2.314 | 0.031 | 4.340 83.891 |
Omnibus: | 0.432 | Durbin-Watson: | 1.929 |
Prob(Omnibus): | 0.806 | Jarque-Bera (JB): | 0.534 |
Skew: | 0.265 | Prob(JB): | 0.766 |
Kurtosis: | 2.473 | Cond. No. | 430. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:32:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.085 |
Model: | OLS | Adj. R-squared: | 0.042 |
Method: | Least Squares | F-statistic: | 1.958 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.176 |
Time: | 03:32:16 | Log-Likelihood: | -112.08 |
No. Observations: | 23 | AIC: | 228.2 |
Df Residuals: | 21 | BIC: | 230.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -360.7905 | 314.871 | -1.146 | 0.265 | -1015.601 294.020 |
expression | 47.3178 | 33.814 | 1.399 | 0.176 | -23.003 117.638 |
Omnibus: | 4.386 | Durbin-Watson: | 2.468 |
Prob(Omnibus): | 0.112 | Jarque-Bera (JB): | 1.556 |
Skew: | 0.114 | Prob(JB): | 0.459 |
Kurtosis: | 1.747 | Cond. No. | 430. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.851 | 0.375 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.501 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 3.687 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0466 |
Time: | 03:32:16 | Log-Likelihood: | -70.081 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -296.8372 | 341.617 | -0.869 | 0.403 | -1048.732 455.058 |
C(dose)[T.1] | 354.4435 | 523.419 | 0.677 | 0.512 | -797.594 1506.481 |
expression | 39.7389 | 37.247 | 1.067 | 0.309 | -42.242 121.720 |
expression:C(dose)[T.1] | -33.4826 | 56.154 | -0.596 | 0.563 | -157.077 90.112 |
Omnibus: | 2.213 | Durbin-Watson: | 0.897 |
Prob(Omnibus): | 0.331 | Jarque-Bera (JB): | 1.448 |
Skew: | -0.744 | Prob(JB): | 0.485 |
Kurtosis: | 2.684 | Cond. No. | 818. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.485 |
Model: | OLS | Adj. R-squared: | 0.399 |
Method: | Least Squares | F-statistic: | 5.656 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0186 |
Time: | 03:32:16 | Log-Likelihood: | -70.319 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 12 | BIC: | 148.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -161.8022 | 248.799 | -0.650 | 0.528 | -703.889 380.284 |
C(dose)[T.1] | 42.5198 | 16.845 | 2.524 | 0.027 | 5.818 79.221 |
expression | 25.0075 | 27.115 | 0.922 | 0.375 | -34.071 84.087 |
Omnibus: | 2.694 | Durbin-Watson: | 0.789 |
Prob(Omnibus): | 0.260 | Jarque-Bera (JB): | 1.899 |
Skew: | -0.844 | Prob(JB): | 0.387 |
Kurtosis: | 2.568 | Cond. No. | 310. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:32:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.212 |
Model: | OLS | Adj. R-squared: | 0.151 |
Method: | Least Squares | F-statistic: | 3.496 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0842 |
Time: | 03:32:16 | Log-Likelihood: | -73.514 |
No. Observations: | 15 | AIC: | 151.0 |
Df Residuals: | 13 | BIC: | 152.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -412.9483 | 271.088 | -1.523 | 0.152 | -998.599 172.702 |
expression | 54.4229 | 29.105 | 1.870 | 0.084 | -8.456 117.301 |
Omnibus: | 3.586 | Durbin-Watson: | 1.577 |
Prob(Omnibus): | 0.166 | Jarque-Bera (JB): | 1.374 |
Skew: | 0.294 | Prob(JB): | 0.503 |
Kurtosis: | 1.639 | Cond. No. | 283. |