AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.325 0.263 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.93e-05
Time: 04:05:54 Log-Likelihood: -99.974
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.3846 84.131 0.207 0.838 -158.704 193.473
C(dose)[T.1] -51.9606 138.005 -0.377 0.711 -340.807 236.886
expression 5.9979 13.669 0.439 0.666 -22.612 34.608
expression:C(dose)[T.1] 17.2486 22.494 0.767 0.453 -29.833 64.330
Omnibus: 0.058 Durbin-Watson: 1.927
Prob(Omnibus): 0.972 Jarque-Bera (JB): 0.173
Skew: -0.100 Prob(JB): 0.917
Kurtosis: 2.625 Cond. No. 249.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 20.38
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.49e-05
Time: 04:05:54 Log-Likelihood: -100.32
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -21.7199 66.220 -0.328 0.746 -159.853 116.413
C(dose)[T.1] 53.6560 8.498 6.314 0.000 35.930 71.382
expression 12.3672 10.743 1.151 0.263 -10.043 34.778
Omnibus: 0.087 Durbin-Watson: 1.971
Prob(Omnibus): 0.958 Jarque-Bera (JB): 0.300
Skew: -0.074 Prob(JB): 0.861
Kurtosis: 2.460 Cond. No. 98.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:05:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.032
Method: Least Squares F-statistic: 0.3138
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.581
Time: 04:05:54 Log-Likelihood: -112.93
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.4919 111.319 0.157 0.877 -214.009 248.993
expression 10.1557 18.131 0.560 0.581 -27.549 47.860
Omnibus: 3.965 Durbin-Watson: 2.507
Prob(Omnibus): 0.138 Jarque-Bera (JB): 1.602
Skew: 0.228 Prob(JB): 0.449
Kurtosis: 1.790 Cond. No. 97.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.479 0.247 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.534
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 4.202
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0329
Time: 04:05:54 Log-Likelihood: -69.573
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 150.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -158.3709 163.096 -0.971 0.352 -517.343 200.602
C(dose)[T.1] 227.5078 230.085 0.989 0.344 -278.906 733.922
expression 35.2997 25.439 1.388 0.193 -20.690 91.290
expression:C(dose)[T.1] -27.7156 36.279 -0.764 0.461 -107.566 52.134
Omnibus: 2.319 Durbin-Watson: 0.810
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.512
Skew: -0.763 Prob(JB): 0.470
Kurtosis: 2.695 Cond. No. 262.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.427
Method: Least Squares F-statistic: 6.227
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0140
Time: 04:05:54 Log-Likelihood: -69.961
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -71.2044 114.501 -0.622 0.546 -320.681 178.272
C(dose)[T.1] 52.1233 15.045 3.465 0.005 19.344 84.903
expression 21.6728 17.820 1.216 0.247 -17.153 60.498
Omnibus: 2.350 Durbin-Watson: 0.678
Prob(Omnibus): 0.309 Jarque-Bera (JB): 1.723
Skew: -0.787 Prob(JB): 0.422
Kurtosis: 2.472 Cond. No. 101.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:05:54 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2436
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.630
Time: 04:05:54 Log-Likelihood: -75.161
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 19.0522 151.506 0.126 0.902 -308.257 346.362
expression 11.7975 23.902 0.494 0.630 -39.840 63.435
Omnibus: 2.034 Durbin-Watson: 1.640
Prob(Omnibus): 0.362 Jarque-Bera (JB): 1.030
Skew: 0.218 Prob(JB): 0.597
Kurtosis: 1.793 Cond. No. 97.8