AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.390 0.252 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.757
Model: OLS Adj. R-squared: 0.718
Method: Least Squares F-statistic: 19.70
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.70e-06
Time: 23:02:21 Log-Likelihood: -96.848
No. Observations: 23 AIC: 201.7
Df Residuals: 19 BIC: 206.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -158.5912 160.879 -0.986 0.337 -495.316 178.133
C(dose)[T.1] 542.7790 193.406 2.806 0.011 137.977 947.581
expression 25.7113 19.428 1.323 0.201 -14.952 66.375
expression:C(dose)[T.1] -61.4039 23.849 -2.575 0.019 -111.321 -11.487
Omnibus: 0.631 Durbin-Watson: 1.955
Prob(Omnibus): 0.730 Jarque-Bera (JB): 0.678
Skew: 0.187 Prob(JB): 0.712
Kurtosis: 2.246 Cond. No. 587.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 20.47
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.45e-05
Time: 23:02:21 Log-Likelihood: -100.29
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.6587 105.735 1.690 0.107 -41.901 399.218
C(dose)[T.1] 45.4311 10.812 4.202 0.000 22.878 67.984
expression -15.0366 12.756 -1.179 0.252 -41.645 11.571
Omnibus: 1.501 Durbin-Watson: 2.113
Prob(Omnibus): 0.472 Jarque-Bera (JB): 1.335
Skew: 0.477 Prob(JB): 0.513
Kurtosis: 2.306 Cond. No. 204.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:02:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.382
Model: OLS Adj. R-squared: 0.353
Method: Least Squares F-statistic: 12.99
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00167
Time: 23:02:21 Log-Likelihood: -107.57
No. Observations: 23 AIC: 219.1
Df Residuals: 21 BIC: 221.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 467.2093 107.666 4.339 0.000 243.306 691.113
expression -48.2854 13.398 -3.604 0.002 -76.147 -20.424
Omnibus: 0.791 Durbin-Watson: 2.556
Prob(Omnibus): 0.673 Jarque-Bera (JB): 0.704
Skew: 0.052 Prob(JB): 0.703
Kurtosis: 2.149 Cond. No. 155.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
14.195 0.003 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.747
Model: OLS Adj. R-squared: 0.679
Method: Least Squares F-statistic: 10.85
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00129
Time: 23:02:21 Log-Likelihood: -64.978
No. Observations: 15 AIC: 138.0
Df Residuals: 11 BIC: 140.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 374.9449 158.858 2.360 0.038 25.302 724.588
C(dose)[T.1] 38.9736 186.662 0.209 0.838 -371.867 449.814
expression -37.3230 19.255 -1.938 0.079 -79.703 5.057
expression:C(dose)[T.1] -0.3618 22.895 -0.016 0.988 -50.754 50.031
Omnibus: 0.116 Durbin-Watson: 1.322
Prob(Omnibus): 0.944 Jarque-Bera (JB): 0.157
Skew: -0.144 Prob(JB): 0.925
Kurtosis: 2.589 Cond. No. 401.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.747
Model: OLS Adj. R-squared: 0.705
Method: Least Squares F-statistic: 17.76
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000259
Time: 23:02:21 Log-Likelihood: -64.978
No. Observations: 15 AIC: 136.0
Df Residuals: 12 BIC: 138.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 377.0531 82.548 4.568 0.001 197.197 556.909
C(dose)[T.1] 36.0301 11.212 3.214 0.007 11.602 60.458
expression -37.5789 9.974 -3.768 0.003 -59.311 -15.847
Omnibus: 0.114 Durbin-Watson: 1.327
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.162
Skew: -0.145 Prob(JB): 0.922
Kurtosis: 2.581 Cond. No. 128.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:02:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.494
Method: Least Squares F-statistic: 14.67
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00209
Time: 23:02:22 Log-Likelihood: -69.635
No. Observations: 15 AIC: 143.3
Df Residuals: 13 BIC: 144.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 476.7195 100.256 4.755 0.000 260.130 693.309
expression -47.5696 12.420 -3.830 0.002 -74.402 -20.737
Omnibus: 0.898 Durbin-Watson: 2.320
Prob(Omnibus): 0.638 Jarque-Bera (JB): 0.550
Skew: 0.444 Prob(JB): 0.760
Kurtosis: 2.699 Cond. No. 118.