AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.012 | 0.914 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.16 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000114 |
Time: | 22:48:42 | Log-Likelihood: | -100.78 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.6593 | 100.015 | 0.057 | 0.955 | -203.674 214.992 |
C(dose)[T.1] | 173.6035 | 180.400 | 0.962 | 0.348 | -203.977 551.185 |
expression | 6.7272 | 13.832 | 0.486 | 0.632 | -22.224 35.678 |
expression:C(dose)[T.1] | -15.6961 | 23.307 | -0.673 | 0.509 | -64.479 33.087 |
Omnibus: | 0.332 | Durbin-Watson: | 1.832 |
Prob(Omnibus): | 0.847 | Jarque-Bera (JB): | 0.495 |
Skew: | -0.114 | Prob(JB): | 0.781 |
Kurtosis: | 2.318 | Cond. No. | 385. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.82e-05 |
Time: | 22:48:42 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.5567 | 79.471 | 0.573 | 0.573 | -120.217 211.331 |
C(dose)[T.1] | 52.4029 | 12.251 | 4.277 | 0.000 | 26.848 77.958 |
expression | 1.1988 | 10.980 | 0.109 | 0.914 | -21.705 24.102 |
Omnibus: | 0.302 | Durbin-Watson: | 1.896 |
Prob(Omnibus): | 0.860 | Jarque-Bera (JB): | 0.473 |
Skew: | 0.050 | Prob(JB): | 0.790 |
Kurtosis: | 2.305 | Cond. No. | 142. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:48:42 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.328 |
Model: | OLS | Adj. R-squared: | 0.296 |
Method: | Least Squares | F-statistic: | 10.27 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00426 |
Time: | 22:48:42 | Log-Likelihood: | -108.53 |
No. Observations: | 23 | AIC: | 221.1 |
Df Residuals: | 21 | BIC: | 223.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -178.3504 | 80.751 | -2.209 | 0.038 | -346.280 -10.420 |
expression | 34.0029 | 10.611 | 3.204 | 0.004 | 11.936 56.070 |
Omnibus: | 0.336 | Durbin-Watson: | 2.222 |
Prob(Omnibus): | 0.845 | Jarque-Bera (JB): | 0.271 |
Skew: | 0.230 | Prob(JB): | 0.873 |
Kurtosis: | 2.732 | Cond. No. | 106. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.594 | 0.082 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.628 |
Model: | OLS | Adj. R-squared: | 0.526 |
Method: | Least Squares | F-statistic: | 6.189 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0102 |
Time: | 22:48:42 | Log-Likelihood: | -67.885 |
No. Observations: | 15 | AIC: | 143.8 |
Df Residuals: | 11 | BIC: | 146.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 12.0553 | 195.913 | 0.062 | 0.952 | -419.147 443.258 |
C(dose)[T.1] | -267.2948 | 254.893 | -1.049 | 0.317 | -828.310 293.721 |
expression | 7.6925 | 27.182 | 0.283 | 0.782 | -52.135 67.520 |
expression:C(dose)[T.1] | 43.8756 | 35.335 | 1.242 | 0.240 | -33.895 121.646 |
Omnibus: | 11.806 | Durbin-Watson: | 1.083 |
Prob(Omnibus): | 0.003 | Jarque-Bera (JB): | 7.925 |
Skew: | -1.576 | Prob(JB): | 0.0190 |
Kurtosis: | 4.655 | Cond. No. | 385. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.576 |
Model: | OLS | Adj. R-squared: | 0.505 |
Method: | Least Squares | F-statistic: | 8.144 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00583 |
Time: | 22:48:42 | Log-Likelihood: | -68.868 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 12 | BIC: | 145.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -174.8481 | 128.203 | -1.364 | 0.198 | -454.178 104.481 |
C(dose)[T.1] | 48.7657 | 13.809 | 3.531 | 0.004 | 18.678 78.854 |
expression | 33.6573 | 17.755 | 1.896 | 0.082 | -5.027 72.342 |
Omnibus: | 8.642 | Durbin-Watson: | 0.874 |
Prob(Omnibus): | 0.013 | Jarque-Bera (JB): | 5.348 |
Skew: | -1.394 | Prob(JB): | 0.0690 |
Kurtosis: | 3.886 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:48:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.135 |
Model: | OLS | Adj. R-squared: | 0.068 |
Method: | Least Squares | F-statistic: | 2.028 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.178 |
Time: | 22:48:43 | Log-Likelihood: | -74.213 |
No. Observations: | 15 | AIC: | 152.4 |
Df Residuals: | 13 | BIC: | 153.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -156.2733 | 175.744 | -0.889 | 0.390 | -535.946 223.399 |
expression | 34.6890 | 24.356 | 1.424 | 0.178 | -17.929 87.307 |
Omnibus: | 0.855 | Durbin-Watson: | 2.171 |
Prob(Omnibus): | 0.652 | Jarque-Bera (JB): | 0.787 |
Skew: | -0.444 | Prob(JB): | 0.675 |
Kurtosis: | 2.312 | Cond. No. | 137. |