AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.125 0.302 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.686
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 5.06e-05
Time: 11:49:43 Log-Likelihood: -99.779
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.4728 88.720 0.287 0.777 -160.221 211.166
C(dose)[T.1] -122.1623 165.577 -0.738 0.470 -468.720 224.395
expression 3.6399 11.213 0.325 0.749 -19.830 27.110
expression:C(dose)[T.1] 21.8819 20.745 1.055 0.305 -21.538 65.302
Omnibus: 2.158 Durbin-Watson: 1.920
Prob(Omnibus): 0.340 Jarque-Bera (JB): 1.450
Skew: 0.380 Prob(JB): 0.484
Kurtosis: 2.033 Cond. No. 375.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.10
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.64e-05
Time: 11:49:43 Log-Likelihood: -100.43
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.0005 74.920 -0.334 0.742 -181.281 131.280
C(dose)[T.1] 52.2555 8.594 6.081 0.000 34.329 70.182
expression 10.0333 9.461 1.061 0.302 -9.701 29.768
Omnibus: 2.083 Durbin-Watson: 1.903
Prob(Omnibus): 0.353 Jarque-Bera (JB): 1.137
Skew: 0.146 Prob(JB): 0.566
Kurtosis: 1.951 Cond. No. 142.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:49:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: 0.008
Method: Least Squares F-statistic: 1.187
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.288
Time: 11:49:43 Log-Likelihood: -112.47
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -54.2558 123.147 -0.441 0.664 -310.354 201.843
expression 16.8602 15.473 1.090 0.288 -15.317 49.037
Omnibus: 1.671 Durbin-Watson: 2.590
Prob(Omnibus): 0.434 Jarque-Bera (JB): 1.078
Skew: 0.208 Prob(JB): 0.583
Kurtosis: 2.024 Cond. No. 142.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.993 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.300
Method: Least Squares F-statistic: 2.999
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0769
Time: 11:49:43 Log-Likelihood: -70.817
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.3046 239.517 0.168 0.869 -486.868 567.477
C(dose)[T.1] 95.1643 302.233 0.315 0.759 -570.046 760.374
expression 3.2934 29.046 0.113 0.912 -60.636 67.223
expression:C(dose)[T.1] -5.6734 37.197 -0.153 0.882 -87.544 76.197
Omnibus: 2.496 Durbin-Watson: 0.804
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.736
Skew: -0.808 Prob(JB): 0.420
Kurtosis: 2.591 Cond. No. 422.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0281
Time: 11:49:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.7948 143.689 0.479 0.641 -244.277 381.867
C(dose)[T.1] 49.1437 16.684 2.946 0.012 12.793 85.494
expression -0.1659 17.391 -0.010 0.993 -38.058 37.726
Omnibus: 2.692 Durbin-Watson: 0.812
Prob(Omnibus): 0.260 Jarque-Bera (JB): 1.856
Skew: -0.840 Prob(JB): 0.395
Kurtosis: 2.615 Cond. No. 151.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:49:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.050
Model: OLS Adj. R-squared: -0.023
Method: Least Squares F-statistic: 0.6873
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.422
Time: 11:49:43 Log-Likelihood: -74.914
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 232.0340 167.194 1.388 0.189 -129.167 593.235
expression -17.1541 20.692 -0.829 0.422 -61.855 27.547
Omnibus: 0.169 Durbin-Watson: 1.452
Prob(Omnibus): 0.919 Jarque-Bera (JB): 0.337
Skew: 0.186 Prob(JB): 0.845
Kurtosis: 2.368 Cond. No. 139.