AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.955 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.613 |
Method: | Least Squares | F-statistic: | 12.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.02e-05 |
Time: | 05:25:44 | Log-Likelihood: | -100.49 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 183.5268 | 266.083 | 0.690 | 0.499 | -373.391 740.445 |
C(dose)[T.1] | -546.2103 | 612.235 | -0.892 | 0.383 | -1827.634 735.213 |
expression | -11.5435 | 23.746 | -0.486 | 0.632 | -61.243 38.156 |
expression:C(dose)[T.1] | 52.3772 | 53.443 | 0.980 | 0.339 | -59.481 164.236 |
Omnibus: | 0.083 | Durbin-Watson: | 1.967 |
Prob(Omnibus): | 0.960 | Jarque-Bera (JB): | 0.069 |
Skew: | -0.061 | Prob(JB): | 0.966 |
Kurtosis: | 2.760 | Cond. No. | 1.86e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:25:44 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.6919 | 238.156 | 0.284 | 0.779 | -429.093 564.477 |
C(dose)[T.1] | 53.7139 | 11.007 | 4.880 | 0.000 | 30.754 76.674 |
expression | -1.2036 | 21.252 | -0.057 | 0.955 | -45.534 43.127 |
Omnibus: | 0.329 | Durbin-Watson: | 1.881 |
Prob(Omnibus): | 0.849 | Jarque-Bera (JB): | 0.489 |
Skew: | 0.058 | Prob(JB): | 0.783 |
Kurtosis: | 2.295 | Cond. No. | 623. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:25:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.231 |
Model: | OLS | Adj. R-squared: | 0.195 |
Method: | Least Squares | F-statistic: | 6.319 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0202 |
Time: | 05:25:45 | Log-Likelihood: | -110.08 |
No. Observations: | 23 | AIC: | 224.2 |
Df Residuals: | 21 | BIC: | 226.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -618.1896 | 277.710 | -2.226 | 0.037 | -1195.719 -40.660 |
expression | 61.4766 | 24.456 | 2.514 | 0.020 | 10.617 112.336 |
Omnibus: | 3.475 | Durbin-Watson: | 2.806 |
Prob(Omnibus): | 0.176 | Jarque-Bera (JB): | 1.372 |
Skew: | 0.040 | Prob(JB): | 0.504 |
Kurtosis: | 1.806 | Cond. No. | 502. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.793 | 0.049 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.606 |
Model: | OLS | Adj. R-squared: | 0.499 |
Method: | Least Squares | F-statistic: | 5.642 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0137 |
Time: | 05:25:45 | Log-Likelihood: | -68.312 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 11 | BIC: | 147.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -675.0191 | 502.086 | -1.344 | 0.206 | -1780.103 430.064 |
C(dose)[T.1] | 46.2368 | 709.928 | 0.065 | 0.949 | -1516.305 1608.778 |
expression | 63.4649 | 42.910 | 1.479 | 0.167 | -30.979 157.909 |
expression:C(dose)[T.1] | -0.1917 | 60.462 | -0.003 | 0.998 | -133.268 132.885 |
Omnibus: | 1.834 | Durbin-Watson: | 1.213 |
Prob(Omnibus): | 0.400 | Jarque-Bera (JB): | 1.439 |
Skew: | -0.675 | Prob(JB): | 0.487 |
Kurtosis: | 2.308 | Cond. No. | 1.61e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.606 |
Model: | OLS | Adj. R-squared: | 0.540 |
Method: | Least Squares | F-statistic: | 9.233 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00373 |
Time: | 05:25:45 | Log-Likelihood: | -68.312 |
No. Observations: | 15 | AIC: | 142.6 |
Df Residuals: | 12 | BIC: | 144.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -673.8898 | 338.734 | -1.989 | 0.070 | -1411.929 64.149 |
C(dose)[T.1] | 43.9868 | 13.516 | 3.254 | 0.007 | 14.538 73.436 |
expression | 63.3684 | 28.943 | 2.189 | 0.049 | 0.306 126.430 |
Omnibus: | 1.836 | Durbin-Watson: | 1.212 |
Prob(Omnibus): | 0.399 | Jarque-Bera (JB): | 1.439 |
Skew: | -0.676 | Prob(JB): | 0.487 |
Kurtosis: | 2.310 | Cond. No. | 604. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:25:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.258 |
Model: | OLS | Adj. R-squared: | 0.201 |
Method: | Least Squares | F-statistic: | 4.531 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0530 |
Time: | 05:25:45 | Log-Likelihood: | -73.057 |
No. Observations: | 15 | AIC: | 150.1 |
Df Residuals: | 13 | BIC: | 151.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -845.1472 | 441.115 | -1.916 | 0.078 | -1798.117 107.823 |
expression | 79.9508 | 37.559 | 2.129 | 0.053 | -1.190 161.091 |
Omnibus: | 3.377 | Durbin-Watson: | 1.853 |
Prob(Omnibus): | 0.185 | Jarque-Bera (JB): | 1.316 |
Skew: | 0.270 | Prob(JB): | 0.518 |
Kurtosis: | 1.653 | Cond. No. | 596. |