AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.702 0.116 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 14.27
Date: Mon, 27 Jan 2025 Prob (F-statistic): 4.16e-05
Time: 21:50:27 Log-Likelihood: -99.537
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -159.9834 289.770 -0.552 0.587 -766.478 446.512
C(dose)[T.1] -69.6772 370.052 -0.188 0.853 -844.205 704.851
expression 21.4548 29.019 0.739 0.469 -39.283 82.193
expression:C(dose)[T.1] 12.4271 37.102 0.335 0.741 -65.228 90.082
Omnibus: 0.723 Durbin-Watson: 2.223
Prob(Omnibus): 0.697 Jarque-Bera (JB): 0.688
Skew: -0.098 Prob(JB): 0.709
Kurtosis: 2.176 Cond. No. 1.21e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.691
Model: OLS Adj. R-squared: 0.660
Method: Least Squares F-statistic: 22.34
Date: Mon, 27 Jan 2025 Prob (F-statistic): 7.98e-06
Time: 21:50:27 Log-Likelihood: -99.605
No. Observations: 23 AIC: 205.2
Df Residuals: 20 BIC: 208.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -235.8814 176.555 -1.336 0.197 -604.168 132.406
C(dose)[T.1] 54.2376 8.250 6.575 0.000 37.029 71.446
expression 29.0572 17.676 1.644 0.116 -7.814 65.928
Omnibus: 1.006 Durbin-Watson: 2.200
Prob(Omnibus): 0.605 Jarque-Bera (JB): 0.806
Skew: -0.122 Prob(JB): 0.668
Kurtosis: 2.116 Cond. No. 433.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:50:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.024
Method: Least Squares F-statistic: 0.4863
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.493
Time: 21:50:27 Log-Likelihood: -112.84
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -133.0194 305.144 -0.436 0.667 -767.600 501.562
expression 21.3408 30.602 0.697 0.493 -42.300 84.982
Omnibus: 3.864 Durbin-Watson: 2.618
Prob(Omnibus): 0.145 Jarque-Bera (JB): 1.578
Skew: 0.223 Prob(JB): 0.454
Kurtosis: 1.797 Cond. No. 431.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.024 0.880 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.326
Method: Least Squares F-statistic: 3.258
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0634
Time: 21:50:27 Log-Likelihood: -70.532
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -48.4401 233.987 -0.207 0.840 -563.443 466.562
C(dose)[T.1] 320.0208 414.731 0.772 0.457 -592.797 1232.838
expression 12.5068 25.225 0.496 0.630 -43.012 68.026
expression:C(dose)[T.1] -29.0411 44.383 -0.654 0.526 -126.728 68.646
Omnibus: 1.203 Durbin-Watson: 0.964
Prob(Omnibus): 0.548 Jarque-Bera (JB): 0.984
Skew: -0.547 Prob(JB): 0.611
Kurtosis: 2.387 Cond. No. 601.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.906
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0277
Time: 21:50:27 Log-Likelihood: -70.818
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.4637 187.994 0.205 0.841 -371.141 448.068
C(dose)[T.1] 48.8608 15.874 3.078 0.010 14.275 83.447
expression 3.1265 20.254 0.154 0.880 -41.004 47.256
Omnibus: 2.869 Durbin-Watson: 0.816
Prob(Omnibus): 0.238 Jarque-Bera (JB): 1.966
Skew: -0.868 Prob(JB): 0.374
Kurtosis: 2.637 Cond. No. 227.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:50:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.060
Method: Least Squares F-statistic: 0.2047
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.658
Time: 21:50:27 Log-Likelihood: -75.183
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.0754 240.586 -0.063 0.951 -534.830 504.679
expression 11.6655 25.787 0.452 0.658 -44.043 67.374
Omnibus: 1.558 Durbin-Watson: 1.633
Prob(Omnibus): 0.459 Jarque-Bera (JB): 0.857
Skew: 0.069 Prob(JB): 0.651
Kurtosis: 1.837 Cond. No. 225.