AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.135 0.717 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.72
Date: Mon, 27 Jan 2025 Prob (F-statistic): 8.64e-05
Time: 22:03:13 Log-Likelihood: -100.44
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -146.1881 215.463 -0.678 0.506 -597.157 304.781
C(dose)[T.1] 351.0495 309.870 1.133 0.271 -297.517 999.616
expression 22.6539 24.347 0.930 0.364 -28.306 73.614
expression:C(dose)[T.1] -33.7116 35.109 -0.960 0.349 -107.195 39.771
Omnibus: 0.852 Durbin-Watson: 1.643
Prob(Omnibus): 0.653 Jarque-Bera (JB): 0.725
Skew: -0.033 Prob(JB): 0.696
Kurtosis: 2.133 Cond. No. 814.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.69
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.65e-05
Time: 22:03:14 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.7689 154.987 -0.018 0.986 -326.067 320.529
C(dose)[T.1] 53.6287 8.776 6.111 0.000 35.322 71.935
expression 6.4410 17.507 0.368 0.717 -30.078 42.961
Omnibus: 0.116 Durbin-Watson: 1.791
Prob(Omnibus): 0.944 Jarque-Bera (JB): 0.340
Skew: 0.005 Prob(JB): 0.844
Kurtosis: 2.404 Cond. No. 318.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:03:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01248
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.912
Time: 22:03:14 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.1234 254.344 0.425 0.675 -420.813 637.060
expression -3.2190 28.811 -0.112 0.912 -63.135 56.697
Omnibus: 3.337 Durbin-Watson: 2.515
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.560
Skew: 0.279 Prob(JB): 0.458
Kurtosis: 1.853 Cond. No. 315.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.244 0.630 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.491
Model: OLS Adj. R-squared: 0.352
Method: Least Squares F-statistic: 3.534
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0519
Time: 22:03:14 Log-Likelihood: -70.238
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 292.7767 248.765 1.177 0.264 -254.752 840.305
C(dose)[T.1] -252.7734 361.727 -0.699 0.499 -1048.930 543.383
expression -24.8979 27.456 -0.907 0.384 -85.327 35.531
expression:C(dose)[T.1] 34.0030 41.545 0.818 0.430 -57.437 125.443
Omnibus: 2.187 Durbin-Watson: 0.978
Prob(Omnibus): 0.335 Jarque-Bera (JB): 1.413
Skew: -0.737 Prob(JB): 0.493
Kurtosis: 2.701 Cond. No. 524.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 5.107
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0249
Time: 22:03:14 Log-Likelihood: -70.682
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 158.3669 184.268 0.859 0.407 -243.118 559.851
C(dose)[T.1] 42.8095 20.240 2.115 0.056 -1.289 86.908
expression -10.0474 20.320 -0.494 0.630 -54.321 34.226
Omnibus: 2.960 Durbin-Watson: 0.768
Prob(Omnibus): 0.228 Jarque-Bera (JB): 2.046
Skew: -0.885 Prob(JB): 0.360
Kurtosis: 2.623 Cond. No. 210.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:03:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.258
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 4.529
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0530
Time: 22:03:14 Log-Likelihood: -73.058
No. Observations: 15 AIC: 150.1
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 420.1668 153.668 2.734 0.017 88.187 752.146
expression -37.4776 17.610 -2.128 0.053 -75.522 0.567
Omnibus: 3.460 Durbin-Watson: 1.297
Prob(Omnibus): 0.177 Jarque-Bera (JB): 1.200
Skew: -0.065 Prob(JB): 0.549
Kurtosis: 1.621 Cond. No. 155.