AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.788 | 0.385 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.51 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 9.55e-05 |
Time: | 23:01:29 | Log-Likelihood: | -100.56 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.7968 | 79.674 | 1.064 | 0.301 | -81.962 251.556 |
C(dose)[T.1] | 84.6771 | 109.188 | 0.776 | 0.448 | -143.856 313.210 |
expression | -5.2504 | 13.636 | -0.385 | 0.704 | -33.790 23.289 |
expression:C(dose)[T.1] | -5.6564 | 18.910 | -0.299 | 0.768 | -45.235 33.922 |
Omnibus: | 0.395 | Durbin-Watson: | 1.972 |
Prob(Omnibus): | 0.821 | Jarque-Bera (JB): | 0.136 |
Skew: | -0.183 | Prob(JB): | 0.934 |
Kurtosis: | 2.910 | Cond. No. | 193. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.62 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.93e-05 |
Time: | 23:01:29 | Log-Likelihood: | -100.62 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 101.9320 | 54.100 | 1.884 | 0.074 | -10.918 214.782 |
C(dose)[T.1] | 52.1252 | 8.710 | 5.985 | 0.000 | 33.957 70.293 |
expression | -8.1916 | 9.230 | -0.888 | 0.385 | -27.444 11.061 |
Omnibus: | 0.175 | Durbin-Watson: | 1.980 |
Prob(Omnibus): | 0.916 | Jarque-Bera (JB): | 0.179 |
Skew: | -0.161 | Prob(JB): | 0.915 |
Kurtosis: | 2.711 | Cond. No. | 75.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:01:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.058 |
Model: | OLS | Adj. R-squared: | 0.013 |
Method: | Least Squares | F-statistic: | 1.286 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.270 |
Time: | 23:01:29 | Log-Likelihood: | -112.42 |
No. Observations: | 23 | AIC: | 228.8 |
Df Residuals: | 21 | BIC: | 231.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 176.7024 | 85.815 | 2.059 | 0.052 | -1.760 355.165 |
expression | -16.8518 | 14.861 | -1.134 | 0.270 | -47.757 14.054 |
Omnibus: | 2.359 | Durbin-Watson: | 2.650 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.196 |
Skew: | 0.138 | Prob(JB): | 0.550 |
Kurtosis: | 1.917 | Cond. No. | 72.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.484 | 0.247 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.519 |
Model: | OLS | Adj. R-squared: | 0.388 |
Method: | Least Squares | F-statistic: | 3.960 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0386 |
Time: | 23:01:30 | Log-Likelihood: | -69.807 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 11 | BIC: | 150.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -126.7463 | 162.260 | -0.781 | 0.451 | -483.879 230.386 |
C(dose)[T.1] | 166.7698 | 245.378 | 0.680 | 0.511 | -373.304 706.843 |
expression | 27.1837 | 22.662 | 1.200 | 0.256 | -22.694 77.061 |
expression:C(dose)[T.1] | -16.3496 | 34.484 | -0.474 | 0.645 | -92.247 59.548 |
Omnibus: | 2.731 | Durbin-Watson: | 0.898 |
Prob(Omnibus): | 0.255 | Jarque-Bera (JB): | 1.736 |
Skew: | -0.825 | Prob(JB): | 0.420 |
Kurtosis: | 2.765 | Cond. No. | 300. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.509 |
Model: | OLS | Adj. R-squared: | 0.428 |
Method: | Least Squares | F-statistic: | 6.231 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0139 |
Time: | 23:01:30 | Log-Likelihood: | -69.959 |
No. Observations: | 15 | AIC: | 145.9 |
Df Residuals: | 12 | BIC: | 148.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -76.3100 | 118.501 | -0.644 | 0.532 | -334.501 181.881 |
C(dose)[T.1] | 50.6591 | 14.897 | 3.401 | 0.005 | 18.202 83.117 |
expression | 20.1228 | 16.520 | 1.218 | 0.247 | -15.871 56.117 |
Omnibus: | 2.666 | Durbin-Watson: | 0.764 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.664 |
Skew: | -0.809 | Prob(JB): | 0.435 |
Kurtosis: | 2.788 | Cond. No. | 116. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:01:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.037 |
Model: | OLS | Adj. R-squared: | -0.037 |
Method: | Least Squares | F-statistic: | 0.4948 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.494 |
Time: | 23:01:30 | Log-Likelihood: | -75.020 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -17.1196 | 157.813 | -0.108 | 0.915 | -358.053 323.814 |
expression | 15.5943 | 22.169 | 0.703 | 0.494 | -32.300 63.488 |
Omnibus: | 1.841 | Durbin-Watson: | 1.669 |
Prob(Omnibus): | 0.398 | Jarque-Bera (JB): | 0.986 |
Skew: | 0.215 | Prob(JB): | 0.611 |
Kurtosis: | 1.820 | Cond. No. | 115. |