AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.146 0.706 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.89
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.95e-05
Time: 03:44:23 Log-Likelihood: -99.750
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -82.6405 115.414 -0.716 0.483 -324.204 158.923
C(dose)[T.1] 335.0357 192.373 1.742 0.098 -67.605 737.677
expression 27.2663 22.966 1.187 0.250 -20.801 75.334
expression:C(dose)[T.1] -56.4618 38.577 -1.464 0.160 -137.204 24.281
Omnibus: 0.094 Durbin-Watson: 1.874
Prob(Omnibus): 0.954 Jarque-Bera (JB): 0.320
Skew: -0.011 Prob(JB): 0.852
Kurtosis: 2.423 Cond. No. 287.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.70
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.63e-05
Time: 03:44:23 Log-Likelihood: -100.98
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.7917 95.413 0.186 0.854 -181.235 216.819
C(dose)[T.1] 53.7550 8.806 6.104 0.000 35.386 72.124
expression 7.2558 18.972 0.382 0.706 -32.320 46.831
Omnibus: 0.393 Durbin-Watson: 1.842
Prob(Omnibus): 0.821 Jarque-Bera (JB): 0.525
Skew: 0.055 Prob(JB): 0.769
Kurtosis: 2.268 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:44:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05238
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.821
Time: 03:44:23 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.2295 155.335 0.742 0.466 -207.807 438.266
expression -7.1146 31.087 -0.229 0.821 -71.763 57.534
Omnibus: 2.968 Durbin-Watson: 2.494
Prob(Omnibus): 0.227 Jarque-Bera (JB): 1.430
Skew: 0.240 Prob(JB): 0.489
Kurtosis: 1.877 Cond. No. 112.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.616 0.082 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.603
Model: OLS Adj. R-squared: 0.495
Method: Least Squares F-statistic: 5.565
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0143
Time: 03:44:23 Log-Likelihood: -68.375
No. Observations: 15 AIC: 144.7
Df Residuals: 11 BIC: 147.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -475.7355 353.837 -1.345 0.206 -1254.526 303.056
C(dose)[T.1] 369.5907 388.965 0.950 0.362 -486.516 1225.697
expression 105.4767 68.683 1.536 0.153 -45.694 256.647
expression:C(dose)[T.1] -64.1007 74.929 -0.855 0.411 -229.018 100.817
Omnibus: 1.432 Durbin-Watson: 1.326
Prob(Omnibus): 0.489 Jarque-Bera (JB): 0.978
Skew: -0.332 Prob(JB): 0.613
Kurtosis: 1.940 Cond. No. 474.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.576
Model: OLS Adj. R-squared: 0.506
Method: Least Squares F-statistic: 8.165
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00578
Time: 03:44:23 Log-Likelihood: -68.858
No. Observations: 15 AIC: 143.7
Df Residuals: 12 BIC: 145.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -198.3806 140.148 -1.416 0.182 -503.738 106.977
C(dose)[T.1] 37.0963 15.194 2.441 0.031 3.991 70.202
expression 51.6173 27.145 1.902 0.082 -7.526 110.761
Omnibus: 0.862 Durbin-Watson: 0.950
Prob(Omnibus): 0.650 Jarque-Bera (JB): 0.790
Skew: -0.354 Prob(JB): 0.674
Kurtosis: 2.126 Cond. No. 112.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:44:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.366
Model: OLS Adj. R-squared: 0.317
Method: Least Squares F-statistic: 7.505
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0169
Time: 03:44:23 Log-Likelihood: -71.882
No. Observations: 15 AIC: 147.8
Df Residuals: 13 BIC: 149.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -324.9944 153.040 -2.124 0.053 -655.616 5.628
expression 79.3725 28.974 2.739 0.017 16.779 141.966
Omnibus: 1.459 Durbin-Watson: 1.364
Prob(Omnibus): 0.482 Jarque-Bera (JB): 0.865
Skew: 0.575 Prob(JB): 0.649
Kurtosis: 2.753 Cond. No. 103.