AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.322 0.083 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.699
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 14.74
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.39e-05
Time: 21:34:55 Log-Likelihood: -99.282
No. Observations: 23 AIC: 206.6
Df Residuals: 19 BIC: 211.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -55.3984 130.734 -0.424 0.677 -329.028 218.231
C(dose)[T.1] 65.9987 144.641 0.456 0.653 -236.739 368.736
expression 19.2528 22.942 0.839 0.412 -28.764 67.270
expression:C(dose)[T.1] -3.7460 24.967 -0.150 0.882 -56.003 48.511
Omnibus: 0.398 Durbin-Watson: 1.704
Prob(Omnibus): 0.820 Jarque-Bera (JB): 0.525
Skew: -0.001 Prob(JB): 0.769
Kurtosis: 2.260 Cond. No. 326.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.699
Model: OLS Adj. R-squared: 0.669
Method: Least Squares F-statistic: 23.23
Date: Mon, 27 Jan 2025 Prob (F-statistic): 6.10e-06
Time: 21:34:55 Log-Likelihood: -99.296
No. Observations: 23 AIC: 204.6
Df Residuals: 20 BIC: 208.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -37.3927 50.574 -0.739 0.468 -142.887 68.102
C(dose)[T.1] 44.3466 9.502 4.667 0.000 24.525 64.168
expression 16.0900 8.828 1.823 0.083 -2.326 34.506
Omnibus: 0.297 Durbin-Watson: 1.684
Prob(Omnibus): 0.862 Jarque-Bera (JB): 0.469
Skew: 0.029 Prob(JB): 0.791
Kurtosis: 2.303 Cond. No. 77.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:34:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.371
Model: OLS Adj. R-squared: 0.341
Method: Least Squares F-statistic: 12.40
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00203
Time: 21:34:55 Log-Likelihood: -107.77
No. Observations: 23 AIC: 219.5
Df Residuals: 21 BIC: 221.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -143.6748 63.693 -2.256 0.035 -276.133 -11.217
expression 37.4802 10.643 3.522 0.002 15.347 59.614
Omnibus: 3.720 Durbin-Watson: 1.799
Prob(Omnibus): 0.156 Jarque-Bera (JB): 2.130
Skew: 0.707 Prob(JB): 0.345
Kurtosis: 3.472 Cond. No. 68.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.817 0.119 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.554
Model: OLS Adj. R-squared: 0.432
Method: Least Squares F-statistic: 4.547
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0263
Time: 21:34:55 Log-Likelihood: -69.251
No. Observations: 15 AIC: 146.5
Df Residuals: 11 BIC: 149.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -126.5321 150.850 -0.839 0.419 -458.551 205.487
C(dose)[T.1] 35.0099 264.413 0.132 0.897 -546.959 616.979
expression 33.4202 25.925 1.289 0.224 -23.641 90.482
expression:C(dose)[T.1] -0.6331 42.892 -0.015 0.988 -95.037 93.771
Omnibus: 2.018 Durbin-Watson: 1.331
Prob(Omnibus): 0.364 Jarque-Bera (JB): 1.485
Skew: -0.725 Prob(JB): 0.476
Kurtosis: 2.477 Cond. No. 283.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.554
Model: OLS Adj. R-squared: 0.479
Method: Least Squares F-statistic: 7.440
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00792
Time: 21:34:55 Log-Likelihood: -69.252
No. Observations: 15 AIC: 144.5
Df Residuals: 12 BIC: 146.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -125.1896 115.230 -1.086 0.299 -376.254 125.875
C(dose)[T.1] 31.1164 17.796 1.749 0.106 -7.657 69.890
expression 33.1889 19.774 1.678 0.119 -9.896 76.274
Omnibus: 2.003 Durbin-Watson: 1.325
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.475
Skew: -0.722 Prob(JB): 0.478
Kurtosis: 2.477 Cond. No. 103.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:34:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.440
Model: OLS Adj. R-squared: 0.397
Method: Least Squares F-statistic: 10.21
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00704
Time: 21:34:55 Log-Likelihood: -70.954
No. Observations: 15 AIC: 145.9
Df Residuals: 13 BIC: 147.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -236.1498 103.513 -2.281 0.040 -459.777 -12.523
expression 54.1195 16.940 3.195 0.007 17.524 90.715
Omnibus: 0.833 Durbin-Watson: 1.938
Prob(Omnibus): 0.659 Jarque-Bera (JB): 0.746
Skew: 0.290 Prob(JB): 0.689
Kurtosis: 2.075 Cond. No. 85.4