AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.473 | 0.047 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.753 |
Model: | OLS | Adj. R-squared: | 0.715 |
Method: | Least Squares | F-statistic: | 19.35 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.32e-06 |
Time: | 05:00:26 | Log-Likelihood: | -97.003 |
No. Observations: | 23 | AIC: | 202.0 |
Df Residuals: | 19 | BIC: | 206.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.9585 | 232.289 | 0.258 | 0.799 | -426.228 546.145 |
C(dose)[T.1] | 575.3029 | 297.669 | 1.933 | 0.068 | -47.726 1198.331 |
expression | -0.6285 | 25.383 | -0.025 | 0.981 | -53.756 52.499 |
expression:C(dose)[T.1] | -57.4284 | 32.608 | -1.761 | 0.094 | -125.679 10.822 |
Omnibus: | 0.189 | Durbin-Watson: | 1.928 |
Prob(Omnibus): | 0.910 | Jarque-Bera (JB): | 0.250 |
Skew: | 0.182 | Prob(JB): | 0.882 |
Kurtosis: | 2.641 | Cond. No. | 992. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.713 |
Model: | OLS | Adj. R-squared: | 0.685 |
Method: | Least Squares | F-statistic: | 24.87 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.77e-06 |
Time: | 05:00:26 | Log-Likelihood: | -98.742 |
No. Observations: | 23 | AIC: | 203.5 |
Df Residuals: | 20 | BIC: | 206.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 378.3277 | 153.347 | 2.467 | 0.023 | 58.451 698.205 |
C(dose)[T.1] | 51.2325 | 7.990 | 6.412 | 0.000 | 34.565 67.900 |
expression | -35.4266 | 16.750 | -2.115 | 0.047 | -70.367 -0.486 |
Omnibus: | 0.584 | Durbin-Watson: | 2.224 |
Prob(Omnibus): | 0.747 | Jarque-Bera (JB): | 0.184 |
Skew: | 0.219 | Prob(JB): | 0.912 |
Kurtosis: | 2.993 | Cond. No. | 358. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:26 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.124 |
Model: | OLS | Adj. R-squared: | 0.082 |
Method: | Least Squares | F-statistic: | 2.963 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0999 |
Time: | 05:00:26 | Log-Likelihood: | -111.59 |
No. Observations: | 23 | AIC: | 227.2 |
Df Residuals: | 21 | BIC: | 229.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 524.8267 | 258.677 | 2.029 | 0.055 | -13.122 1062.775 |
expression | -48.8025 | 28.352 | -1.721 | 0.100 | -107.764 10.159 |
Omnibus: | 4.953 | Durbin-Watson: | 2.722 |
Prob(Omnibus): | 0.084 | Jarque-Bera (JB): | 1.606 |
Skew: | -0.048 | Prob(JB): | 0.448 |
Kurtosis: | 1.709 | Cond. No. | 354. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.990 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.321 |
Method: | Least Squares | F-statistic: | 3.208 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0658 |
Time: | 05:00:26 | Log-Likelihood: | -70.586 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -32.5232 | 244.741 | -0.133 | 0.897 | -571.194 506.148 |
C(dose)[T.1] | 266.1363 | 357.967 | 0.743 | 0.473 | -521.744 1054.017 |
expression | 11.8650 | 29.019 | 0.409 | 0.690 | -52.004 75.734 |
expression:C(dose)[T.1] | -25.5714 | 42.156 | -0.607 | 0.556 | -118.357 67.214 |
Omnibus: | 2.268 | Durbin-Watson: | 0.729 |
Prob(Omnibus): | 0.322 | Jarque-Bera (JB): | 1.739 |
Skew: | -0.761 | Prob(JB): | 0.419 |
Kurtosis: | 2.317 | Cond. No. | 502. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.885 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0281 |
Time: | 05:00:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.5491 | 172.970 | 0.402 | 0.695 | -307.321 446.419 |
C(dose)[T.1] | 49.2244 | 15.903 | 3.095 | 0.009 | 14.574 83.875 |
expression | -0.2517 | 20.487 | -0.012 | 0.990 | -44.890 44.386 |
Omnibus: | 2.722 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.256 | Jarque-Bera (JB): | 1.879 |
Skew: | -0.845 | Prob(JB): | 0.391 |
Kurtosis: | 2.614 | Cond. No. | 190. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.009 |
Model: | OLS | Adj. R-squared: | -0.068 |
Method: | Least Squares | F-statistic: | 0.1142 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.741 |
Time: | 05:00:26 | Log-Likelihood: | -75.234 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.7680 | 221.854 | 0.085 | 0.934 | -460.517 498.053 |
expression | 8.8289 | 26.124 | 0.338 | 0.741 | -47.609 65.267 |
Omnibus: | 0.659 | Durbin-Watson: | 1.619 |
Prob(Omnibus): | 0.719 | Jarque-Bera (JB): | 0.614 |
Skew: | 0.122 | Prob(JB): | 0.736 |
Kurtosis: | 2.039 | Cond. No. | 189. |