AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.194 0.665 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.99e-05
Time: 03:56:47 Log-Likelihood: -99.762
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 284.0912 174.932 1.624 0.121 -82.046 650.228
C(dose)[T.1] -316.5824 257.911 -1.227 0.235 -856.396 223.231
expression -28.3186 21.537 -1.315 0.204 -73.397 16.759
expression:C(dose)[T.1] 45.2549 31.443 1.439 0.166 -20.556 111.066
Omnibus: 1.042 Durbin-Watson: 2.087
Prob(Omnibus): 0.594 Jarque-Bera (JB): 0.799
Skew: -0.065 Prob(JB): 0.671
Kurtosis: 2.096 Cond. No. 646.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.57e-05
Time: 03:56:48 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.7313 130.886 0.854 0.403 -161.293 384.755
C(dose)[T.1] 54.4051 9.059 6.006 0.000 35.508 73.302
expression -7.0861 16.106 -0.440 0.665 -40.683 26.511
Omnibus: 0.348 Durbin-Watson: 1.879
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.498
Skew: 0.015 Prob(JB): 0.780
Kurtosis: 2.280 Cond. No. 250.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:56:48 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.026
Model: OLS Adj. R-squared: -0.021
Method: Least Squares F-statistic: 0.5518
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.466
Time: 03:56:48 Log-Likelihood: -112.81
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -74.5340 207.774 -0.359 0.723 -506.624 357.556
expression 18.8346 25.355 0.743 0.466 -33.894 71.563
Omnibus: 2.927 Durbin-Watson: 2.362
Prob(Omnibus): 0.231 Jarque-Bera (JB): 1.353
Skew: 0.180 Prob(JB): 0.508
Kurtosis: 1.867 Cond. No. 243.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.621 0.446 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.582
Model: OLS Adj. R-squared: 0.467
Method: Least Squares F-statistic: 5.097
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0188
Time: 03:56:48 Log-Likelihood: -68.765
No. Observations: 15 AIC: 145.5
Df Residuals: 11 BIC: 148.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 7.3830 183.243 0.040 0.969 -395.932 410.698
C(dose)[T.1] 571.3219 311.081 1.837 0.093 -113.362 1256.006
expression 7.8886 24.035 0.328 0.749 -45.011 60.789
expression:C(dose)[T.1] -66.6174 39.961 -1.667 0.124 -154.572 21.337
Omnibus: 0.580 Durbin-Watson: 1.176
Prob(Omnibus): 0.748 Jarque-Bera (JB): 0.543
Skew: -0.379 Prob(JB): 0.762
Kurtosis: 2.456 Cond. No. 431.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.476
Model: OLS Adj. R-squared: 0.389
Method: Least Squares F-statistic: 5.448
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0207
Time: 03:56:48 Log-Likelihood: -70.455
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.8099 157.017 1.215 0.248 -151.300 532.920
C(dose)[T.1] 53.3517 16.229 3.287 0.006 17.992 88.711
expression -16.2095 20.576 -0.788 0.446 -61.040 28.621
Omnibus: 0.858 Durbin-Watson: 0.876
Prob(Omnibus): 0.651 Jarque-Bera (JB): 0.734
Skew: -0.462 Prob(JB): 0.693
Kurtosis: 2.433 Cond. No. 162.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:56:48 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.05021
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.826
Time: 03:56:48 Log-Likelihood: -75.271
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.9181 199.964 0.245 0.811 -383.078 480.914
expression 5.7752 25.774 0.224 0.826 -49.906 61.456
Omnibus: 0.501 Durbin-Watson: 1.580
Prob(Omnibus): 0.778 Jarque-Bera (JB): 0.542
Skew: 0.044 Prob(JB): 0.763
Kurtosis: 2.073 Cond. No. 156.