AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.255 0.619 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.46e-05
Time: 03:58:52 Log-Likelihood: -100.41
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -195.7206 238.404 -0.821 0.422 -694.706 303.265
C(dose)[T.1] 298.7188 265.481 1.125 0.275 -256.939 854.377
expression 35.8483 34.184 1.049 0.307 -35.700 107.397
expression:C(dose)[T.1] -35.1832 38.204 -0.921 0.369 -115.146 44.780
Omnibus: 0.943 Durbin-Watson: 1.720
Prob(Omnibus): 0.624 Jarque-Bera (JB): 0.859
Skew: -0.249 Prob(JB): 0.651
Kurtosis: 2.194 Cond. No. 634.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.86
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.50e-05
Time: 03:58:52 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.6634 106.186 0.006 0.995 -220.837 222.163
C(dose)[T.1] 54.3727 8.952 6.074 0.000 35.698 73.047
expression 7.6802 15.206 0.505 0.619 -24.039 39.400
Omnibus: 0.155 Durbin-Watson: 1.849
Prob(Omnibus): 0.925 Jarque-Bera (JB): 0.370
Skew: 0.066 Prob(JB): 0.831
Kurtosis: 2.393 Cond. No. 173.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:58:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.014
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.3058
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.586
Time: 03:58:52 Log-Likelihood: -112.94
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 172.7755 168.431 1.026 0.317 -177.497 523.048
expression -13.4723 24.362 -0.553 0.586 -64.136 37.192
Omnibus: 3.968 Durbin-Watson: 2.435
Prob(Omnibus): 0.138 Jarque-Bera (JB): 1.697
Skew: 0.291 Prob(JB): 0.428
Kurtosis: 1.803 Cond. No. 166.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.451 0.252 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.521
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 3.985
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0380
Time: 03:58:52 Log-Likelihood: -69.783
No. Observations: 15 AIC: 147.6
Df Residuals: 11 BIC: 150.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -365.6030 459.005 -0.797 0.443 -1375.867 644.661
C(dose)[T.1] 310.9195 499.251 0.623 0.546 -787.924 1409.763
expression 55.4523 58.761 0.944 0.366 -73.880 184.784
expression:C(dose)[T.1] -34.1762 63.608 -0.537 0.602 -174.177 105.825
Omnibus: 2.421 Durbin-Watson: 0.857
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.394
Skew: -0.468 Prob(JB): 0.498
Kurtosis: 1.836 Cond. No. 821.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.426
Method: Least Squares F-statistic: 6.201
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0141
Time: 03:58:52 Log-Likelihood: -69.977
No. Observations: 15 AIC: 146.0
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -137.8459 170.757 -0.807 0.435 -509.894 234.202
C(dose)[T.1] 42.8192 15.781 2.713 0.019 8.435 77.203
expression 26.2866 21.822 1.205 0.252 -21.260 73.833
Omnibus: 1.988 Durbin-Watson: 0.834
Prob(Omnibus): 0.370 Jarque-Bera (JB): 1.375
Skew: -0.533 Prob(JB): 0.503
Kurtosis: 1.968 Cond. No. 186.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:58:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.207
Model: OLS Adj. R-squared: 0.145
Method: Least Squares F-statistic: 3.384
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0888
Time: 03:58:52 Log-Likelihood: -73.565
No. Observations: 15 AIC: 151.1
Df Residuals: 13 BIC: 152.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -272.6979 199.372 -1.368 0.195 -703.415 158.019
expression 46.1506 25.089 1.839 0.089 -8.050 100.352
Omnibus: 0.641 Durbin-Watson: 1.398
Prob(Omnibus): 0.726 Jarque-Bera (JB): 0.627
Skew: 0.190 Prob(JB): 0.731
Kurtosis: 2.074 Cond. No. 178.