AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 1.583 | 0.223 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.675 | 
  | Model: | OLS | Adj. R-squared: | 0.624 | 
  | Method: | Least Squares | F-statistic: | 13.15 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 7.01e-05 | 
  | Time: | 12:37:52 | Log-Likelihood: | -100.18 | 
  | No. Observations: | 23 | AIC: | 208.4 | 
  | Df Residuals: | 19 | BIC: | 212.9 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -426.5286 | 507.540 | -0.840 | 0.411 | -1488.822   635.765 | 
  | C(dose)[T.1] | -30.5006 | 880.557 | -0.035 | 0.973 | -1873.527  1812.526 | 
  | expression | 40.5342 | 42.791 | 0.947 | 0.355 | -49.029   130.097 | 
  | expression:C(dose)[T.1] | 6.6016 | 73.756 | 0.090 | 0.930 | -147.772   160.975 | 
  | Omnibus: | 1.371 | Durbin-Watson: | 1.887 | 
  | Prob(Omnibus): | 0.504 | Jarque-Bera (JB): | 0.925 | 
  | Skew: | 0.118 | Prob(JB): | 0.630 | 
  | Kurtosis: | 2.046 | Cond. No. | 2.96e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.675 | 
  | Model: | OLS | Adj. R-squared: | 0.642 | 
  | Method: | Least Squares | F-statistic: | 20.75 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 1.32e-05 | 
  | Time: | 12:37:52 | Log-Likelihood: | -100.19 | 
  | No. Observations: | 23 | AIC: | 206.4 | 
  | Df Residuals: | 20 | BIC: | 209.8 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -452.8826 | 403.021 | -1.124 | 0.274 | -1293.569   387.804 | 
  | C(dose)[T.1] | 48.3098 | 9.340 | 5.173 | 0.000 | 28.828    67.792 | 
  | expression | 42.7563 | 33.978 | 1.258 | 0.223 | -28.120   113.633 | 
  | Omnibus: | 1.371 | Durbin-Watson: | 1.870 | 
  | Prob(Omnibus): | 0.504 | Jarque-Bera (JB): | 0.920 | 
  | Skew: | 0.108 | Prob(JB): | 0.631 | 
  | Kurtosis: | 2.044 | Cond. No. | 1.15e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 12:37:52 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.240 | 
  | Model: | OLS | Adj. R-squared: | 0.204 | 
  | Method: | Least Squares | F-statistic: | 6.623 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0177 | 
  | Time: | 12:37:52 | Log-Likelihood: | -109.95 | 
  | No. Observations: | 23 | AIC: | 223.9 | 
  | Df Residuals: | 21 | BIC: | 226.2 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -1325.6498 | 546.117 | -2.427 | 0.024 | -2461.363  -189.937 | 
  | expression | 117.9370 | 45.827 | 2.574 | 0.018 | 22.635   213.239 | 
  | Omnibus: | 1.972 | Durbin-Watson: | 2.338 | 
  | Prob(Omnibus): | 0.373 | Jarque-Bera (JB): | 1.275 | 
  | Skew: | 0.303 | Prob(JB): | 0.529 | 
  | Kurtosis: | 2.018 | Cond. No. | 1.04e+03 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.003 | 0.956 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.482 | 
  | Model: | OLS | Adj. R-squared: | 0.340 | 
  | Method: | Least Squares | F-statistic: | 3.406 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0569 | 
  | Time: | 12:37:52 | Log-Likelihood: | -70.373 | 
  | No. Observations: | 15 | AIC: | 148.7 | 
  | Df Residuals: | 11 | BIC: | 151.6 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -979.5827 | 1535.402 | -0.638 | 0.537 | -4358.979  2399.814 | 
  | C(dose)[T.1] | 1706.8321 | 1992.352 | 0.857 | 0.410 | -2678.306  6091.970 | 
  | expression | 89.7705 | 131.641 | 0.682 | 0.509 | -199.970   379.511 | 
  | expression:C(dose)[T.1] | -141.0504 | 169.403 | -0.833 | 0.423 | -513.904   231.803 | 
  | Omnibus: | 3.502 | Durbin-Watson: | 0.993 | 
  | Prob(Omnibus): | 0.174 | Jarque-Bera (JB): | 2.072 | 
  | Skew: | -0.910 | Prob(JB): | 0.355 | 
  | Kurtosis: | 2.974 | Cond. No. | 4.14e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.357 | 
  | Method: | Least Squares | F-statistic: | 4.888 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0280 | 
  | Time: | 12:37:52 | Log-Likelihood: | -70.831 | 
  | No. Observations: | 15 | AIC: | 147.7 | 
  | Df Residuals: | 12 | BIC: | 149.8 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 13.8399 | 953.978 | 0.015 | 0.989 | -2064.701  2092.380 | 
  | C(dose)[T.1] | 48.0731 | 25.446 | 1.889 | 0.083 | -7.368   103.514 | 
  | expression | 4.5947 | 81.788 | 0.056 | 0.956 | -173.606   182.795 | 
  | Omnibus: | 2.668 | Durbin-Watson: | 0.824 | 
  | Prob(Omnibus): | 0.263 | Jarque-Bera (JB): | 1.861 | 
  | Skew: | -0.838 | Prob(JB): | 0.394 | 
  | Kurtosis: | 2.590 | Cond. No. | 1.45e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 12:37:52 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.285 | 
  | Model: | OLS | Adj. R-squared: | 0.230 | 
  | Method: | Least Squares | F-statistic: | 5.182 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0404 | 
  | Time: | 12:37:52 | Log-Likelihood: | -72.784 | 
  | No. Observations: | 15 | AIC: | 149.6 | 
  | Df Residuals: | 13 | BIC: | 151.0 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -1392.5024 | 652.919 | -2.133 | 0.053 | -2803.048    18.043 | 
  | expression | 126.0150 | 55.357 | 2.276 | 0.040 | 6.423   245.607 | 
  | Omnibus: | 1.329 | Durbin-Watson: | 1.475 | 
  | Prob(Omnibus): | 0.515 | Jarque-Bera (JB): | 0.796 | 
  | Skew: | 0.032 | Prob(JB): | 0.672 | 
  | Kurtosis: | 1.873 | Cond. No. | 903. |