AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.273 0.607 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 15.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.49e-05
Time: 05:24:56 Log-Likelihood: -98.904
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -7.7785 161.344 -0.048 0.962 -345.475 329.918
C(dose)[T.1] 757.9365 368.033 2.059 0.053 -12.366 1528.239
expression 6.7877 17.657 0.384 0.705 -30.168 43.743
expression:C(dose)[T.1] -72.7336 38.258 -1.901 0.073 -152.809 7.341
Omnibus: 1.053 Durbin-Watson: 1.760
Prob(Omnibus): 0.591 Jarque-Bera (JB): 0.978
Skew: 0.435 Prob(JB): 0.613
Kurtosis: 2.485 Cond. No. 1.01e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.47e-05
Time: 05:24:56 Log-Likelihood: -100.91
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.6974 152.226 0.878 0.390 -183.841 451.236
C(dose)[T.1] 58.6668 13.412 4.374 0.000 30.689 86.644
expression -8.7042 16.656 -0.523 0.607 -43.448 26.040
Omnibus: 1.086 Durbin-Watson: 1.810
Prob(Omnibus): 0.581 Jarque-Bera (JB): 0.811
Skew: 0.054 Prob(JB): 0.667
Kurtosis: 2.086 Cond. No. 335.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:24:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.323
Model: OLS Adj. R-squared: 0.290
Method: Least Squares F-statistic: 10.00
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00470
Time: 05:24:56 Log-Likelihood: -108.63
No. Observations: 23 AIC: 221.3
Df Residuals: 21 BIC: 223.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -360.3929 139.304 -2.587 0.017 -650.091 -70.694
expression 46.6957 14.767 3.162 0.005 15.987 77.405
Omnibus: 0.737 Durbin-Watson: 2.224
Prob(Omnibus): 0.692 Jarque-Bera (JB): 0.781
Skew: 0.315 Prob(JB): 0.677
Kurtosis: 2.353 Cond. No. 224.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.473 0.142 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.544
Model: OLS Adj. R-squared: 0.419
Method: Least Squares F-statistic: 4.370
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0295
Time: 05:24:56 Log-Likelihood: -69.415
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -107.7653 293.015 -0.368 0.720 -752.688 537.157
C(dose)[T.1] 2.2602 333.918 0.007 0.995 -732.689 737.209
expression 20.6848 34.572 0.598 0.562 -55.407 96.777
expression:C(dose)[T.1] 5.4698 39.361 0.139 0.892 -81.163 92.102
Omnibus: 0.137 Durbin-Watson: 1.225
Prob(Omnibus): 0.934 Jarque-Bera (JB): 0.355
Skew: 0.017 Prob(JB): 0.837
Kurtosis: 2.247 Cond. No. 578.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.543
Model: OLS Adj. R-squared: 0.467
Method: Least Squares F-statistic: 7.128
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00912
Time: 05:24:57 Log-Likelihood: -69.428
No. Observations: 15 AIC: 144.9
Df Residuals: 12 BIC: 147.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -143.5051 134.546 -1.067 0.307 -436.656 149.646
C(dose)[T.1] 48.6165 14.337 3.391 0.005 17.379 79.854
expression 24.9045 15.837 1.573 0.142 -9.602 59.411
Omnibus: 0.169 Durbin-Watson: 1.218
Prob(Omnibus): 0.919 Jarque-Bera (JB): 0.376
Skew: 0.044 Prob(JB): 0.829
Kurtosis: 2.229 Cond. No. 162.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:24:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.105
Model: OLS Adj. R-squared: 0.036
Method: Least Squares F-statistic: 1.525
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.239
Time: 05:24:57 Log-Likelihood: -74.468
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -129.2950 180.806 -0.715 0.487 -519.903 261.313
expression 26.2861 21.286 1.235 0.239 -19.700 72.272
Omnibus: 0.554 Durbin-Watson: 1.752
Prob(Omnibus): 0.758 Jarque-Bera (JB): 0.595
Skew: 0.349 Prob(JB): 0.743
Kurtosis: 2.318 Cond. No. 162.