AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.113 | 0.162 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.51e-05 |
Time: | 04:30:29 | Log-Likelihood: | -99.884 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -31.1739 | 168.866 | -0.185 | 0.855 | -384.614 322.267 |
C(dose)[T.1] | 21.6724 | 190.236 | 0.114 | 0.910 | -376.497 419.842 |
expression | 11.1119 | 21.963 | 0.506 | 0.619 | -34.858 57.082 |
expression:C(dose)[T.1] | 4.8941 | 25.004 | 0.196 | 0.847 | -47.439 57.227 |
Omnibus: | 1.421 | Durbin-Watson: | 1.822 |
Prob(Omnibus): | 0.491 | Jarque-Bera (JB): | 0.926 |
Skew: | 0.085 | Prob(JB): | 0.630 |
Kurtosis: | 2.032 | Cond. No. | 497. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 21.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.04e-05 |
Time: | 04:30:29 | Log-Likelihood: | -99.908 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 20 | BIC: | 209.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -60.1900 | 78.903 | -0.763 | 0.454 | -224.778 104.398 |
C(dose)[T.1] | 58.8629 | 9.166 | 6.422 | 0.000 | 39.744 77.982 |
expression | 14.8881 | 10.241 | 1.454 | 0.162 | -6.475 36.251 |
Omnibus: | 1.605 | Durbin-Watson: | 1.889 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 0.980 |
Skew: | 0.089 | Prob(JB): | 0.613 |
Kurtosis: | 2.005 | Cond. No. | 145. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:30:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.028 |
Model: | OLS | Adj. R-squared: | -0.018 |
Method: | Least Squares | F-statistic: | 0.6059 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.445 |
Time: | 04:30:29 | Log-Likelihood: | -112.78 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 172.7011 | 119.671 | 1.443 | 0.164 | -76.169 421.571 |
expression | -12.3873 | 15.914 | -0.778 | 0.445 | -45.483 20.709 |
Omnibus: | 2.130 | Durbin-Watson: | 2.330 |
Prob(Omnibus): | 0.345 | Jarque-Bera (JB): | 1.421 |
Skew: | 0.368 | Prob(JB): | 0.491 |
Kurtosis: | 2.030 | Cond. No. | 129. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.012 | 0.915 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.612 |
Model: | OLS | Adj. R-squared: | 0.506 |
Method: | Least Squares | F-statistic: | 5.780 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0127 |
Time: | 04:30:29 | Log-Likelihood: | -68.202 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 11 | BIC: | 147.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 242.0013 | 138.524 | 1.747 | 0.108 | -62.888 546.890 |
C(dose)[T.1] | -489.6805 | 251.300 | -1.949 | 0.077 | -1042.788 63.427 |
expression | -21.7178 | 17.187 | -1.264 | 0.233 | -59.547 16.112 |
expression:C(dose)[T.1] | 68.3255 | 31.836 | 2.146 | 0.055 | -1.745 138.396 |
Omnibus: | 0.642 | Durbin-Watson: | 1.012 |
Prob(Omnibus): | 0.725 | Jarque-Bera (JB): | 0.617 |
Skew: | -0.395 | Prob(JB): | 0.734 |
Kurtosis: | 2.396 | Cond. No. | 358. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.896 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 04:30:29 | Log-Likelihood: | -70.826 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 81.9226 | 133.117 | 0.615 | 0.550 | -208.114 371.959 |
C(dose)[T.1] | 48.7964 | 16.152 | 3.021 | 0.011 | 13.604 83.989 |
expression | -1.8031 | 16.499 | -0.109 | 0.915 | -37.751 34.144 |
Omnibus: | 2.797 | Durbin-Watson: | 0.846 |
Prob(Omnibus): | 0.247 | Jarque-Bera (JB): | 1.863 |
Skew: | -0.849 | Prob(JB): | 0.394 |
Kurtosis: | 2.688 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:30:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.030 |
Model: | OLS | Adj. R-squared: | -0.044 |
Method: | Least Squares | F-statistic: | 0.4088 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.534 |
Time: | 04:30:30 | Log-Likelihood: | -75.068 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 197.4032 | 162.552 | 1.214 | 0.246 | -153.769 548.575 |
expression | -13.0982 | 20.486 | -0.639 | 0.534 | -57.354 31.158 |
Omnibus: | 1.980 | Durbin-Watson: | 1.799 |
Prob(Omnibus): | 0.372 | Jarque-Bera (JB): | 1.017 |
Skew: | 0.216 | Prob(JB): | 0.601 |
Kurtosis: | 1.800 | Cond. No. | 131. |