AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.908 0.182 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 13.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.58e-05
Time: 05:12:33 Log-Likelihood: -99.900
No. Observations: 23 AIC: 207.8
Df Residuals: 19 BIC: 212.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 94.7942 44.902 2.111 0.048 0.814 188.775
C(dose)[T.1] 89.2867 83.522 1.069 0.298 -85.527 264.101
expression -8.4789 9.299 -0.912 0.373 -27.942 10.984
expression:C(dose)[T.1] -7.6279 17.448 -0.437 0.667 -44.148 28.892
Omnibus: 1.081 Durbin-Watson: 1.856
Prob(Omnibus): 0.582 Jarque-Bera (JB): 0.905
Skew: 0.449 Prob(JB): 0.636
Kurtosis: 2.626 Cond. No. 116.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.648
Method: Least Squares F-statistic: 21.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.14e-05
Time: 05:12:33 Log-Likelihood: -100.02
No. Observations: 23 AIC: 206.0
Df Residuals: 20 BIC: 209.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.1645 37.346 2.816 0.011 27.263 183.066
C(dose)[T.1] 52.9651 8.384 6.318 0.000 35.477 70.453
expression -10.6454 7.707 -1.381 0.182 -26.723 5.432
Omnibus: 0.792 Durbin-Watson: 1.908
Prob(Omnibus): 0.673 Jarque-Bera (JB): 0.668
Skew: 0.380 Prob(JB): 0.716
Kurtosis: 2.654 Cond. No. 44.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:12:33 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.040
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.8805
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.359
Time: 05:12:33 Log-Likelihood: -112.63
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.9575 62.467 2.208 0.038 8.049 267.866
expression -12.2097 13.012 -0.938 0.359 -39.269 14.850
Omnibus: 3.697 Durbin-Watson: 2.559
Prob(Omnibus): 0.157 Jarque-Bera (JB): 1.752
Skew: 0.348 Prob(JB): 0.416
Kurtosis: 1.841 Cond. No. 44.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.178 0.299 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.527
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 4.086
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0355
Time: 05:12:33 Log-Likelihood: -69.684
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.9802 89.567 1.172 0.266 -92.155 302.115
C(dose)[T.1] 152.5194 142.170 1.073 0.306 -160.395 465.434
expression -6.9912 16.546 -0.423 0.681 -43.409 29.427
expression:C(dose)[T.1] -24.1488 29.396 -0.821 0.429 -88.849 40.551
Omnibus: 2.235 Durbin-Watson: 1.312
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.632
Skew: -0.766 Prob(JB): 0.442
Kurtosis: 2.486 Cond. No. 118.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.498
Model: OLS Adj. R-squared: 0.414
Method: Least Squares F-statistic: 5.953
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0160
Time: 05:12:34 Log-Likelihood: -70.131
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.0752 73.282 1.993 0.069 -13.592 305.742
C(dose)[T.1] 36.7894 18.874 1.949 0.075 -4.334 77.913
expression -14.6421 13.490 -1.085 0.299 -44.033 14.749
Omnibus: 1.801 Durbin-Watson: 1.187
Prob(Omnibus): 0.406 Jarque-Bera (JB): 1.414
Skew: -0.669 Prob(JB): 0.493
Kurtosis: 2.314 Cond. No. 51.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:12:34 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.339
Model: OLS Adj. R-squared: 0.288
Method: Least Squares F-statistic: 6.671
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0227
Time: 05:12:34 Log-Likelihood: -72.194
No. Observations: 15 AIC: 148.4
Df Residuals: 13 BIC: 149.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 244.0292 58.798 4.150 0.001 117.003 371.056
expression -30.5656 11.834 -2.583 0.023 -56.131 -5.000
Omnibus: 3.395 Durbin-Watson: 1.533
Prob(Omnibus): 0.183 Jarque-Bera (JB): 1.350
Skew: -0.298 Prob(JB): 0.509
Kurtosis: 1.657 Cond. No. 36.8