AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.501 | 0.487 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 12.79 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.35e-05 |
Time: | 03:58:51 | Log-Likelihood: | -100.40 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.6650 | 99.804 | -0.387 | 0.703 | -247.557 170.227 |
C(dose)[T.1] | 286.1798 | 291.771 | 0.981 | 0.339 | -324.503 896.863 |
expression | 11.5111 | 12.347 | 0.932 | 0.363 | -14.332 37.354 |
expression:C(dose)[T.1] | -28.8286 | 36.090 | -0.799 | 0.434 | -104.366 46.709 |
Omnibus: | 0.460 | Durbin-Watson: | 1.899 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.582 |
Skew: | 0.178 | Prob(JB): | 0.748 |
Kurtosis: | 2.307 | Cond. No. | 626. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.21e-05 |
Time: | 03:58:51 | Log-Likelihood: | -100.78 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -11.4400 | 92.951 | -0.123 | 0.903 | -205.333 182.453 |
C(dose)[T.1] | 53.2205 | 8.664 | 6.143 | 0.000 | 35.148 71.292 |
expression | 8.1367 | 11.497 | 0.708 | 0.487 | -15.845 32.119 |
Omnibus: | 0.017 | Durbin-Watson: | 1.907 |
Prob(Omnibus): | 0.992 | Jarque-Bera (JB): | 0.137 |
Skew: | -0.049 | Prob(JB): | 0.934 |
Kurtosis: | 2.634 | Cond. No. | 177. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:58:51 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.012 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.2474 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.624 |
Time: | 03:58:51 | Log-Likelihood: | -112.97 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 3.1630 | 154.074 | 0.021 | 0.984 | -317.251 323.577 |
expression | 9.4804 | 19.060 | 0.497 | 0.624 | -30.156 49.117 |
Omnibus: | 3.375 | Durbin-Watson: | 2.456 |
Prob(Omnibus): | 0.185 | Jarque-Bera (JB): | 1.632 |
Skew: | 0.318 | Prob(JB): | 0.442 |
Kurtosis: | 1.860 | Cond. No. | 176. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.007 | 0.934 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.307 |
Method: | Least Squares | F-statistic: | 3.063 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0733 |
Time: | 03:58:51 | Log-Likelihood: | -70.746 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.9586 | 171.095 | 0.274 | 0.789 | -329.619 423.537 |
C(dose)[T.1] | 162.2380 | 322.677 | 0.503 | 0.625 | -547.969 872.445 |
expression | 2.8241 | 23.548 | 0.120 | 0.907 | -49.004 54.652 |
expression:C(dose)[T.1] | -15.3277 | 43.792 | -0.350 | 0.733 | -111.712 81.057 |
Omnibus: | 2.609 | Durbin-Watson: | 0.969 |
Prob(Omnibus): | 0.271 | Jarque-Bera (JB): | 1.795 |
Skew: | -0.825 | Prob(JB): | 0.408 |
Kurtosis: | 2.616 | Cond. No. | 362. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.891 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 03:58:51 | Log-Likelihood: | -70.829 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 79.0822 | 139.017 | 0.569 | 0.580 | -223.810 381.974 |
C(dose)[T.1] | 49.4463 | 16.013 | 3.088 | 0.009 | 14.557 84.336 |
expression | -1.6078 | 19.114 | -0.084 | 0.934 | -43.253 40.038 |
Omnibus: | 2.615 | Durbin-Watson: | 0.791 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.814 |
Skew: | -0.828 | Prob(JB): | 0.404 |
Kurtosis: | 2.600 | Cond. No. | 133. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:58:51 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1494 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.705 |
Time: | 03:58:51 | Log-Likelihood: | -75.214 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.1765 | 177.508 | 0.142 | 0.889 | -358.306 408.659 |
expression | 9.3424 | 24.174 | 0.386 | 0.705 | -42.882 61.567 |
Omnibus: | 0.463 | Durbin-Watson: | 1.616 |
Prob(Omnibus): | 0.793 | Jarque-Bera (JB): | 0.525 |
Skew: | 0.007 | Prob(JB): | 0.769 |
Kurtosis: | 2.084 | Cond. No. | 131. |