AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.518 0.480 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.732
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 17.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.18e-05
Time: 04:34:18 Log-Likelihood: -97.980
No. Observations: 23 AIC: 204.0
Df Residuals: 19 BIC: 208.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -53.3117 184.165 -0.289 0.775 -438.773 332.150
C(dose)[T.1] 830.4554 339.785 2.444 0.024 119.277 1541.634
expression 13.4285 22.991 0.584 0.566 -34.692 61.549
expression:C(dose)[T.1] -96.1341 42.095 -2.284 0.034 -184.241 -8.027
Omnibus: 0.948 Durbin-Watson: 1.969
Prob(Omnibus): 0.623 Jarque-Bera (JB): 0.262
Skew: 0.246 Prob(JB): 0.877
Kurtosis: 3.178 Cond. No. 844.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.23
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.19e-05
Time: 04:34:18 Log-Likelihood: -100.77
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.2931 169.784 1.038 0.312 -177.870 530.456
C(dose)[T.1] 54.6990 8.863 6.172 0.000 36.211 73.187
expression -15.2475 21.192 -0.720 0.480 -59.453 28.957
Omnibus: 1.101 Durbin-Watson: 2.000
Prob(Omnibus): 0.577 Jarque-Bera (JB): 0.811
Skew: 0.022 Prob(JB): 0.667
Kurtosis: 2.081 Cond. No. 322.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:34:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.1357
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.716
Time: 04:34:18 Log-Likelihood: -113.03
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -22.3757 277.258 -0.081 0.936 -598.965 554.214
expression 12.6831 34.432 0.368 0.716 -58.923 84.289
Omnibus: 2.952 Durbin-Watson: 2.426
Prob(Omnibus): 0.229 Jarque-Bera (JB): 1.645
Skew: 0.374 Prob(JB): 0.439
Kurtosis: 1.924 Cond. No. 315.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.069 0.322 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 4.134
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0344
Time: 04:34:18 Log-Likelihood: -69.638
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.3803 194.120 0.321 0.754 -364.875 489.635
C(dose)[T.1] 277.5278 253.060 1.097 0.296 -279.454 834.510
expression 0.7078 27.171 0.026 0.980 -59.096 60.512
expression:C(dose)[T.1] -32.9528 35.857 -0.919 0.378 -111.874 45.968
Omnibus: 2.090 Durbin-Watson: 0.962
Prob(Omnibus): 0.352 Jarque-Bera (JB): 1.327
Skew: -0.715 Prob(JB): 0.515
Kurtosis: 2.718 Cond. No. 329.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.410
Method: Least Squares F-statistic: 5.855
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0168
Time: 04:34:18 Log-Likelihood: -70.193
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 197.3442 126.120 1.565 0.144 -77.448 472.137
C(dose)[T.1] 45.4077 15.521 2.926 0.013 11.591 79.224
expression -18.2144 17.615 -1.034 0.322 -56.593 20.165
Omnibus: 2.366 Durbin-Watson: 1.047
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.664
Skew: -0.786 Prob(JB): 0.435
Kurtosis: 2.565 Cond. No. 121.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:34:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.133
Model: OLS Adj. R-squared: 0.066
Method: Least Squares F-statistic: 1.992
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.182
Time: 04:34:19 Log-Likelihood: -74.231
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 306.9850 151.441 2.027 0.064 -20.183 634.153
expression -30.3801 21.526 -1.411 0.182 -76.883 16.123
Omnibus: 0.217 Durbin-Watson: 1.754
Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.403
Skew: -0.149 Prob(JB): 0.818
Kurtosis: 2.255 Cond. No. 115.