AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.806 0.380 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.88e-05
Time: 05:24:08 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 160.5724 171.654 0.935 0.361 -198.704 519.848
C(dose)[T.1] 65.1977 256.580 0.254 0.802 -471.830 602.226
expression -13.8691 22.368 -0.620 0.543 -60.686 32.948
expression:C(dose)[T.1] -1.8521 33.804 -0.055 0.957 -72.605 68.901
Omnibus: 0.516 Durbin-Watson: 1.896
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.583
Skew: 0.009 Prob(JB): 0.747
Kurtosis: 2.220 Cond. No. 568.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.91e-05
Time: 05:24:08 Log-Likelihood: -100.61
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 166.7917 125.513 1.329 0.199 -95.025 428.608
C(dose)[T.1] 51.1485 8.937 5.723 0.000 32.506 69.791
expression -14.6800 16.348 -0.898 0.380 -48.781 19.421
Omnibus: 0.514 Durbin-Watson: 1.901
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.583
Skew: 0.016 Prob(JB): 0.747
Kurtosis: 2.221 Cond. No. 226.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:24:09 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.110
Model: OLS Adj. R-squared: 0.068
Method: Least Squares F-statistic: 2.600
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.122
Time: 05:24:09 Log-Likelihood: -111.76
No. Observations: 23 AIC: 227.5
Df Residuals: 21 BIC: 229.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 385.1140 189.526 2.032 0.055 -9.027 779.256
expression -40.1951 24.929 -1.612 0.122 -92.037 11.647
Omnibus: 4.766 Durbin-Watson: 2.326
Prob(Omnibus): 0.092 Jarque-Bera (JB): 1.725
Skew: 0.224 Prob(JB): 0.422
Kurtosis: 1.736 Cond. No. 215.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.433 0.523 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 3.226
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0649
Time: 05:24:09 Log-Likelihood: -70.566
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.5988 204.224 0.737 0.476 -298.895 600.092
C(dose)[T.1] 61.1081 284.279 0.215 0.834 -564.586 686.802
expression -12.1206 29.712 -0.408 0.691 -77.517 53.276
expression:C(dose)[T.1] -1.6505 41.238 -0.040 0.969 -92.416 89.115
Omnibus: 2.463 Durbin-Watson: 0.946
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.666
Skew: -0.626 Prob(JB): 0.435
Kurtosis: 1.951 Cond. No. 333.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.277
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0227
Time: 05:24:09 Log-Likelihood: -70.567
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.4781 135.845 1.152 0.272 -139.502 452.458
C(dose)[T.1] 49.7488 15.486 3.212 0.007 16.007 83.490
expression -12.9774 19.728 -0.658 0.523 -55.962 30.007
Omnibus: 2.406 Durbin-Watson: 0.957
Prob(Omnibus): 0.300 Jarque-Bera (JB): 1.653
Skew: -0.628 Prob(JB): 0.438
Kurtosis: 1.967 Cond. No. 124.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:24:09 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.066
Method: Least Squares F-statistic: 0.1366
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.718
Time: 05:24:09 Log-Likelihood: -75.222
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.3530 177.995 0.895 0.387 -225.183 543.889
expression -9.5410 25.812 -0.370 0.718 -65.305 46.223
Omnibus: 0.984 Durbin-Watson: 1.685
Prob(Omnibus): 0.611 Jarque-Bera (JB): 0.723
Skew: 0.127 Prob(JB): 0.697
Kurtosis: 1.955 Cond. No. 124.