AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.175 0.680 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 12.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.01e-05
Time: 04:14:03 Log-Likelihood: -100.49
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.2691 50.227 0.224 0.825 -93.857 116.395
C(dose)[T.1] 128.3557 84.458 1.520 0.145 -48.417 305.129
expression 7.4666 8.670 0.861 0.400 -10.680 25.613
expression:C(dose)[T.1] -13.1116 14.720 -0.891 0.384 -43.921 17.698
Omnibus: 0.103 Durbin-Watson: 1.785
Prob(Omnibus): 0.950 Jarque-Bera (JB): 0.321
Skew: -0.066 Prob(JB): 0.852
Kurtosis: 2.437 Cond. No. 139.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.60e-05
Time: 04:14:03 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.4256 40.537 0.923 0.367 -47.133 121.984
C(dose)[T.1] 53.5357 8.745 6.122 0.000 35.295 71.776
expression 2.9183 6.970 0.419 0.680 -11.621 17.458
Omnibus: 0.703 Durbin-Watson: 1.829
Prob(Omnibus): 0.704 Jarque-Bera (JB): 0.665
Skew: -0.013 Prob(JB): 0.717
Kurtosis: 2.167 Cond. No. 55.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:14:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.002754
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.959
Time: 04:14:03 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.2619 66.240 1.151 0.263 -61.492 214.016
expression 0.6043 11.515 0.052 0.959 -23.342 24.551
Omnibus: 3.320 Durbin-Watson: 2.480
Prob(Omnibus): 0.190 Jarque-Bera (JB): 1.579
Skew: 0.293 Prob(JB): 0.454
Kurtosis: 1.858 Cond. No. 54.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.111 0.744 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.471
Model: OLS Adj. R-squared: 0.327
Method: Least Squares F-statistic: 3.263
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0632
Time: 04:14:03 Log-Likelihood: -70.527
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -0.5857 204.584 -0.003 0.998 -450.872 449.701
C(dose)[T.1] 194.6575 243.351 0.800 0.441 -340.955 730.270
expression 13.0996 39.338 0.333 0.745 -73.482 99.682
expression:C(dose)[T.1] -27.5481 46.343 -0.594 0.564 -129.548 74.451
Omnibus: 2.095 Durbin-Watson: 0.705
Prob(Omnibus): 0.351 Jarque-Bera (JB): 1.626
Skew: -0.718 Prob(JB): 0.443
Kurtosis: 2.267 Cond. No. 244.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.363
Method: Least Squares F-statistic: 4.986
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0265
Time: 04:14:03 Log-Likelihood: -70.764
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.4751 105.644 0.970 0.351 -127.704 332.654
C(dose)[T.1] 50.3311 16.032 3.139 0.009 15.401 85.261
expression -6.7500 20.227 -0.334 0.744 -50.822 37.322
Omnibus: 2.580 Durbin-Watson: 0.844
Prob(Omnibus): 0.275 Jarque-Bera (JB): 1.883
Skew: -0.828 Prob(JB): 0.390
Kurtosis: 2.481 Cond. No. 74.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:14:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.071
Method: Least Squares F-statistic: 0.06870
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.797
Time: 04:14:03 Log-Likelihood: -75.261
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.1838 135.754 0.429 0.675 -235.095 351.463
expression 6.7180 25.631 0.262 0.797 -48.654 62.090
Omnibus: 0.699 Durbin-Watson: 1.607
Prob(Omnibus): 0.705 Jarque-Bera (JB): 0.618
Skew: 0.068 Prob(JB): 0.734
Kurtosis: 2.015 Cond. No. 73.5