AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.632 0.071 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.745
Model: OLS Adj. R-squared: 0.705
Method: Least Squares F-statistic: 18.54
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.18e-06
Time: 03:57:01 Log-Likelihood: -97.371
No. Observations: 23 AIC: 202.7
Df Residuals: 19 BIC: 207.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -91.9248 168.519 -0.545 0.592 -444.639 260.790
C(dose)[T.1] -567.8904 346.235 -1.640 0.117 -1292.569 156.788
expression 18.7394 21.599 0.868 0.396 -26.469 63.947
expression:C(dose)[T.1] 77.9104 43.786 1.779 0.091 -13.736 169.556
Omnibus: 0.922 Durbin-Watson: 1.558
Prob(Omnibus): 0.631 Jarque-Bera (JB): 0.915
Skew: 0.373 Prob(JB): 0.633
Kurtosis: 2.369 Cond. No. 850.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.703
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 23.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.34e-06
Time: 03:57:01 Log-Likelihood: -99.144
No. Observations: 23 AIC: 204.3
Df Residuals: 20 BIC: 207.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -239.7643 154.347 -1.553 0.136 -561.727 82.199
C(dose)[T.1] 48.0063 8.539 5.622 0.000 30.195 65.818
expression 37.6975 19.780 1.906 0.071 -3.562 78.957
Omnibus: 1.320 Durbin-Watson: 1.430
Prob(Omnibus): 0.517 Jarque-Bera (JB): 0.920
Skew: 0.138 Prob(JB): 0.631
Kurtosis: 2.060 Cond. No. 307.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:57:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.234
Model: OLS Adj. R-squared: 0.197
Method: Least Squares F-statistic: 6.401
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0195
Time: 03:57:01 Log-Likelihood: -110.04
No. Observations: 23 AIC: 224.1
Df Residuals: 21 BIC: 226.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -503.3300 230.531 -2.183 0.041 -982.745 -23.915
expression 74.1242 29.297 2.530 0.019 13.198 135.050
Omnibus: 1.707 Durbin-Watson: 2.071
Prob(Omnibus): 0.426 Jarque-Bera (JB): 1.008
Skew: -0.090 Prob(JB): 0.604
Kurtosis: 1.990 Cond. No. 292.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.472 0.248 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.515
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 3.893
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0405
Time: 03:57:01 Log-Likelihood: -69.874
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 340.6716 322.114 1.058 0.313 -368.296 1049.640
C(dose)[T.1] 306.0639 681.165 0.449 0.662 -1193.170 1805.298
expression -35.0602 41.306 -0.849 0.414 -125.973 55.853
expression:C(dose)[T.1] -31.6394 86.065 -0.368 0.720 -221.068 157.789
Omnibus: 3.628 Durbin-Watson: 0.776
Prob(Omnibus): 0.163 Jarque-Bera (JB): 1.645
Skew: -0.477 Prob(JB): 0.439
Kurtosis: 1.688 Cond. No. 851.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.427
Method: Least Squares F-statistic: 6.220
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0140
Time: 03:57:01 Log-Likelihood: -69.965
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 397.4685 272.268 1.460 0.170 -195.753 990.690
C(dose)[T.1] 55.7263 15.800 3.527 0.004 21.301 90.152
expression -42.3479 34.907 -1.213 0.248 -118.405 33.709
Omnibus: 2.767 Durbin-Watson: 0.703
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.568
Skew: -0.527 Prob(JB): 0.457
Kurtosis: 1.818 Cond. No. 295.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:57:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 8.145e-05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.993
Time: 03:57:02 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.8651 354.548 0.273 0.789 -669.090 862.820
expression -0.4061 44.999 -0.009 0.993 -97.621 96.808
Omnibus: 0.600 Durbin-Watson: 1.624
Prob(Omnibus): 0.741 Jarque-Bera (JB): 0.580
Skew: 0.049 Prob(JB): 0.748
Kurtosis: 2.042 Cond. No. 279.