AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.180 0.676 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000131
Time: 03:36:25 Log-Likelihood: -100.96
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.0400 134.831 0.749 0.463 -181.165 383.245
C(dose)[T.1] 54.2614 252.699 0.215 0.832 -474.644 583.166
expression -6.1058 17.560 -0.348 0.732 -42.860 30.649
expression:C(dose)[T.1] -0.1966 33.214 -0.006 0.995 -69.714 69.321
Omnibus: 0.456 Durbin-Watson: 1.831
Prob(Omnibus): 0.796 Jarque-Bera (JB): 0.557
Skew: 0.046 Prob(JB): 0.757
Kurtosis: 2.243 Cond. No. 519.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.75
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.59e-05
Time: 03:36:26 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.4614 111.593 0.909 0.374 -131.318 334.241
C(dose)[T.1] 52.7669 8.834 5.973 0.000 34.340 71.194
expression -6.1607 14.528 -0.424 0.676 -36.466 24.144
Omnibus: 0.455 Durbin-Watson: 1.830
Prob(Omnibus): 0.796 Jarque-Bera (JB): 0.556
Skew: 0.044 Prob(JB): 0.757
Kurtosis: 2.243 Cond. No. 199.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:36:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.032
Model: OLS Adj. R-squared: -0.014
Method: Least Squares F-statistic: 0.6863
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.417
Time: 03:36:26 Log-Likelihood: -112.73
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 227.4279 178.439 1.275 0.216 -143.656 598.512
expression -19.3699 23.381 -0.828 0.417 -67.993 29.253
Omnibus: 1.726 Durbin-Watson: 2.492
Prob(Omnibus): 0.422 Jarque-Bera (JB): 1.156
Skew: 0.266 Prob(JB): 0.561
Kurtosis: 2.039 Cond. No. 195.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.053 0.325 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.643
Model: OLS Adj. R-squared: 0.546
Method: Least Squares F-statistic: 6.607
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00815
Time: 03:36:26 Log-Likelihood: -67.573
No. Observations: 15 AIC: 143.1
Df Residuals: 11 BIC: 146.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 293.7552 278.889 1.053 0.315 -320.076 907.587
C(dose)[T.1] -787.7839 384.467 -2.049 0.065 -1633.991 58.423
expression -27.5721 33.955 -0.812 0.434 -102.307 47.163
expression:C(dose)[T.1] 98.2654 45.722 2.149 0.055 -2.367 198.898
Omnibus: 0.883 Durbin-Watson: 0.961
Prob(Omnibus): 0.643 Jarque-Bera (JB): 0.689
Skew: -0.468 Prob(JB): 0.709
Kurtosis: 2.524 Cond. No. 679.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 5.840
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0169
Time: 03:36:26 Log-Likelihood: -70.202
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -151.1144 213.235 -0.709 0.492 -615.713 313.485
C(dose)[T.1] 37.7612 18.759 2.013 0.067 -3.111 78.634
expression 26.6238 25.942 1.026 0.325 -29.900 83.148
Omnibus: 2.014 Durbin-Watson: 0.484
Prob(Omnibus): 0.365 Jarque-Bera (JB): 1.487
Skew: -0.607 Prob(JB): 0.475
Kurtosis: 2.047 Cond. No. 243.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:36:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.322
Model: OLS Adj. R-squared: 0.270
Method: Least Squares F-statistic: 6.178
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0273
Time: 03:36:26 Log-Likelihood: -72.384
No. Observations: 15 AIC: 148.8
Df Residuals: 13 BIC: 150.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -392.6957 195.855 -2.005 0.066 -815.815 30.424
expression 57.6421 23.191 2.486 0.027 7.541 107.743
Omnibus: 1.204 Durbin-Watson: 0.866
Prob(Omnibus): 0.548 Jarque-Bera (JB): 0.934
Skew: -0.366 Prob(JB): 0.627
Kurtosis: 2.020 Cond. No. 200.