AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.020 | 0.888 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.87 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000132 |
Time: | 03:53:03 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 133.3470 | 229.868 | 0.580 | 0.569 | -347.772 614.466 |
C(dose)[T.1] | -95.4687 | 391.230 | -0.244 | 0.810 | -914.322 723.385 |
expression | -8.2090 | 23.835 | -0.344 | 0.734 | -58.097 41.679 |
expression:C(dose)[T.1] | 15.0453 | 39.150 | 0.384 | 0.705 | -66.898 96.988 |
Omnibus: | 0.382 | Durbin-Watson: | 1.923 |
Prob(Omnibus): | 0.826 | Jarque-Bera (JB): | 0.517 |
Skew: | -0.033 | Prob(JB): | 0.772 |
Kurtosis: | 2.268 | Cond. No. | 1.08e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 03:53:03 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 79.5856 | 178.467 | 0.446 | 0.660 | -292.690 451.862 |
C(dose)[T.1] | 54.7859 | 13.436 | 4.078 | 0.001 | 26.760 82.812 |
expression | -2.6324 | 18.502 | -0.142 | 0.888 | -41.226 35.961 |
Omnibus: | 0.287 | Durbin-Watson: | 1.899 |
Prob(Omnibus): | 0.866 | Jarque-Bera (JB): | 0.464 |
Skew: | 0.061 | Prob(JB): | 0.793 |
Kurtosis: | 2.315 | Cond. No. | 409. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:53:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.358 |
Model: | OLS | Adj. R-squared: | 0.327 |
Method: | Least Squares | F-statistic: | 11.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00256 |
Time: | 03:53:03 | Log-Likelihood: | -108.01 |
No. Observations: | 23 | AIC: | 220.0 |
Df Residuals: | 21 | BIC: | 222.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -460.4702 | 157.982 | -2.915 | 0.008 | -789.011 -131.930 |
expression | 54.5441 | 15.941 | 3.422 | 0.003 | 21.393 87.696 |
Omnibus: | 11.434 | Durbin-Watson: | 2.069 |
Prob(Omnibus): | 0.003 | Jarque-Bera (JB): | 2.400 |
Skew: | 0.210 | Prob(JB): | 0.301 |
Kurtosis: | 1.474 | Cond. No. | 274. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
7.717 | 0.017 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.694 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 8.310 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00361 |
Time: | 03:53:03 | Log-Likelihood: | -66.423 |
No. Observations: | 15 | AIC: | 140.8 |
Df Residuals: | 11 | BIC: | 143.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1064.6308 | 501.848 | 2.121 | 0.057 | -39.929 2169.190 |
C(dose)[T.1] | -518.6463 | 538.413 | -0.963 | 0.356 | -1703.686 666.393 |
expression | -105.0295 | 52.848 | -1.987 | 0.072 | -221.348 11.289 |
expression:C(dose)[T.1] | 58.4320 | 56.922 | 1.027 | 0.327 | -66.853 183.717 |
Omnibus: | 4.516 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.105 | Jarque-Bera (JB): | 2.296 |
Skew: | -0.930 | Prob(JB): | 0.317 |
Kurtosis: | 3.460 | Cond. No. | 1.29e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00143 |
Time: | 03:53:03 | Log-Likelihood: | -67.109 |
No. Observations: | 15 | AIC: | 140.2 |
Df Residuals: | 12 | BIC: | 142.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 586.4182 | 187.042 | 3.135 | 0.009 | 178.888 993.948 |
C(dose)[T.1] | 33.8753 | 13.461 | 2.517 | 0.027 | 4.547 63.204 |
expression | -54.6622 | 19.677 | -2.778 | 0.017 | -97.536 -11.789 |
Omnibus: | 7.068 | Durbin-Watson: | 1.195 |
Prob(Omnibus): | 0.029 | Jarque-Bera (JB): | 3.940 |
Skew: | -1.172 | Prob(JB): | 0.139 |
Kurtosis: | 3.900 | Cond. No. | 289. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:53:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.487 |
Model: | OLS | Adj. R-squared: | 0.448 |
Method: | Least Squares | F-statistic: | 12.36 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00379 |
Time: | 03:53:03 | Log-Likelihood: | -70.287 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 13 | BIC: | 146.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 794.0924 | 199.332 | 3.984 | 0.002 | 363.462 1224.723 |
expression | -74.9519 | 21.316 | -3.516 | 0.004 | -121.003 -28.901 |
Omnibus: | 0.458 | Durbin-Watson: | 1.497 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.551 |
Skew: | -0.281 | Prob(JB): | 0.759 |
Kurtosis: | 2.248 | Cond. No. | 259. |