AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.110 | 0.162 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.719 |
Model: | OLS | Adj. R-squared: | 0.675 |
Method: | Least Squares | F-statistic: | 16.24 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.78e-05 |
Time: | 05:26:50 | Log-Likelihood: | -98.487 |
No. Observations: | 23 | AIC: | 205.0 |
Df Residuals: | 19 | BIC: | 209.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 42.0736 | 462.370 | 0.091 | 0.928 | -925.679 1009.826 |
C(dose)[T.1] | -1015.8249 | 677.455 | -1.499 | 0.150 | -2433.754 402.105 |
expression | 1.0945 | 41.699 | 0.026 | 0.979 | -86.183 88.372 |
expression:C(dose)[T.1] | 96.8965 | 61.253 | 1.582 | 0.130 | -31.308 225.101 |
Omnibus: | 0.272 | Durbin-Watson: | 2.263 |
Prob(Omnibus): | 0.873 | Jarque-Bera (JB): | 0.397 |
Skew: | 0.214 | Prob(JB): | 0.820 |
Kurtosis: | 2.519 | Cond. No. | 2.40e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 21.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.04e-05 |
Time: | 05:26:50 | Log-Likelihood: | -99.909 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 20 | BIC: | 209.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -455.8218 | 351.197 | -1.298 | 0.209 | -1188.407 276.763 |
C(dose)[T.1] | 55.7618 | 8.506 | 6.555 | 0.000 | 38.018 73.506 |
expression | 46.0010 | 31.671 | 1.452 | 0.162 | -20.064 112.066 |
Omnibus: | 2.714 | Durbin-Watson: | 2.349 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.440 |
Skew: | 0.287 | Prob(JB): | 0.487 |
Kurtosis: | 1.916 | Cond. No. | 941. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:26:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.009558 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.923 |
Time: | 05:26:50 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 21.5579 | 594.938 | 0.036 | 0.971 | -1215.683 1258.799 |
expression | 5.2575 | 53.777 | 0.098 | 0.923 | -106.579 117.094 |
Omnibus: | 3.441 | Durbin-Watson: | 2.517 |
Prob(Omnibus): | 0.179 | Jarque-Bera (JB): | 1.581 |
Skew: | 0.279 | Prob(JB): | 0.454 |
Kurtosis: | 1.843 | Cond. No. | 920. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.214 | 0.652 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.475 |
Model: | OLS | Adj. R-squared: | 0.332 |
Method: | Least Squares | F-statistic: | 3.322 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0605 |
Time: | 05:26:50 | Log-Likelihood: | -70.462 |
No. Observations: | 15 | AIC: | 148.9 |
Df Residuals: | 11 | BIC: | 151.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -449.9515 | 711.094 | -0.633 | 0.540 | -2015.058 1115.155 |
C(dose)[T.1] | 712.1414 | 1122.370 | 0.634 | 0.539 | -1758.177 3182.460 |
expression | 50.3676 | 69.216 | 0.728 | 0.482 | -101.977 202.712 |
expression:C(dose)[T.1] | -64.1964 | 107.682 | -0.596 | 0.563 | -301.203 172.810 |
Omnibus: | 3.805 | Durbin-Watson: | 1.027 |
Prob(Omnibus): | 0.149 | Jarque-Bera (JB): | 2.329 |
Skew: | -0.965 | Prob(JB): | 0.312 |
Kurtosis: | 2.950 | Cond. No. | 1.89e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 5.079 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0252 |
Time: | 05:26:50 | Log-Likelihood: | -70.701 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -177.4916 | 529.949 | -0.335 | 0.743 | -1332.151 977.167 |
C(dose)[T.1] | 43.1380 | 20.376 | 2.117 | 0.056 | -1.257 87.533 |
expression | 23.8433 | 51.579 | 0.462 | 0.652 | -88.538 136.225 |
Omnibus: | 2.325 | Durbin-Watson: | 0.924 |
Prob(Omnibus): | 0.313 | Jarque-Bera (JB): | 1.754 |
Skew: | -0.780 | Prob(JB): | 0.416 |
Kurtosis: | 2.388 | Cond. No. | 717. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:26:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.256 |
Model: | OLS | Adj. R-squared: | 0.199 |
Method: | Least Squares | F-statistic: | 4.476 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0542 |
Time: | 05:26:50 | Log-Likelihood: | -73.081 |
No. Observations: | 15 | AIC: | 150.2 |
Df Residuals: | 13 | BIC: | 151.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -885.5065 | 462.902 | -1.913 | 0.078 | -1885.545 114.532 |
expression | 94.0825 | 44.469 | 2.116 | 0.054 | -1.988 190.153 |
Omnibus: | 1.307 | Durbin-Watson: | 1.742 |
Prob(Omnibus): | 0.520 | Jarque-Bera (JB): | 0.799 |
Skew: | 0.083 | Prob(JB): | 0.671 |
Kurtosis: | 1.881 | Cond. No. | 555. |