AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.064 0.315 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.660
Method: Least Squares F-statistic: 15.21
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.76e-05
Time: 23:00:01 Log-Likelihood: -99.028
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.6764 218.029 0.315 0.756 -387.664 525.017
C(dose)[T.1] -548.1660 376.056 -1.458 0.161 -1335.260 238.928
expression -1.6724 25.194 -0.066 0.948 -54.403 51.058
expression:C(dose)[T.1] 68.3197 42.946 1.591 0.128 -21.567 158.206
Omnibus: 0.602 Durbin-Watson: 2.234
Prob(Omnibus): 0.740 Jarque-Bera (JB): 0.683
Skew: 0.291 Prob(JB): 0.711
Kurtosis: 2.389 Cond. No. 982.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 20.01
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.69e-05
Time: 23:00:01 Log-Likelihood: -100.47
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -134.7281 183.237 -0.735 0.471 -516.953 247.497
C(dose)[T.1] 49.9112 9.168 5.444 0.000 30.787 69.035
expression 21.8393 21.169 1.032 0.315 -22.319 65.998
Omnibus: 1.561 Durbin-Watson: 2.148
Prob(Omnibus): 0.458 Jarque-Bera (JB): 1.097
Skew: 0.259 Prob(JB): 0.578
Kurtosis: 2.064 Cond. No. 380.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:00:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.173
Model: OLS Adj. R-squared: 0.134
Method: Least Squares F-statistic: 4.393
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0484
Time: 23:00:01 Log-Likelihood: -110.92
No. Observations: 23 AIC: 225.8
Df Residuals: 21 BIC: 228.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -475.1357 264.805 -1.794 0.087 -1025.827 75.555
expression 63.5845 30.336 2.096 0.048 0.496 126.673
Omnibus: 2.103 Durbin-Watson: 3.143
Prob(Omnibus): 0.349 Jarque-Bera (JB): 1.089
Skew: -0.018 Prob(JB): 0.580
Kurtosis: 1.935 Cond. No. 357.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.424 0.527 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 3.718
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0456
Time: 23:00:01 Log-Likelihood: -70.049
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -379.0883 419.058 -0.905 0.385 -1301.428 543.251
C(dose)[T.1] 632.8273 649.293 0.975 0.351 -796.257 2061.911
expression 49.3928 46.338 1.066 0.309 -52.597 151.383
expression:C(dose)[T.1] -64.9101 72.774 -0.892 0.392 -225.085 95.265
Omnibus: 2.220 Durbin-Watson: 1.294
Prob(Omnibus): 0.329 Jarque-Bera (JB): 1.539
Skew: -0.758 Prob(JB): 0.463
Kurtosis: 2.591 Cond. No. 962.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.270
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0228
Time: 23:00:01 Log-Likelihood: -70.572
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -141.1798 320.443 -0.441 0.667 -839.365 557.005
C(dose)[T.1] 53.9016 17.072 3.157 0.008 16.705 91.098
expression 23.0759 35.425 0.651 0.527 -54.108 100.260
Omnibus: 3.231 Durbin-Watson: 1.018
Prob(Omnibus): 0.199 Jarque-Bera (JB): 2.030
Skew: -0.897 Prob(JB): 0.362
Kurtosis: 2.833 Cond. No. 376.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.025
Model: OLS Adj. R-squared: -0.050
Method: Least Squares F-statistic: 0.3377
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.571
Time: 23:00:02 Log-Likelihood: -75.108
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 310.2279 372.804 0.832 0.420 -495.165 1115.621
expression -24.2473 41.726 -0.581 0.571 -114.390 65.896
Omnibus: 0.163 Durbin-Watson: 1.356
Prob(Omnibus): 0.922 Jarque-Bera (JB): 0.370
Skew: -0.091 Prob(JB): 0.831
Kurtosis: 2.253 Cond. No. 336.