AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.088 0.770 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.13
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000116
Time: 23:03:53 Log-Likelihood: -100.80
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 12.5613 155.897 0.081 0.937 -313.735 338.857
C(dose)[T.1] 173.1284 202.603 0.855 0.403 -250.924 597.181
expression 7.9029 29.560 0.267 0.792 -53.967 69.772
expression:C(dose)[T.1] -22.8974 38.584 -0.593 0.560 -103.656 57.861
Omnibus: 1.242 Durbin-Watson: 1.931
Prob(Omnibus): 0.537 Jarque-Bera (JB): 0.941
Skew: 0.205 Prob(JB): 0.625
Kurtosis: 2.098 Cond. No. 334.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.62
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.71e-05
Time: 23:03:53 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.3826 98.670 0.845 0.408 -122.439 289.204
C(dose)[T.1] 53.0143 8.818 6.012 0.000 34.620 71.409
expression -5.5361 18.688 -0.296 0.770 -44.519 33.447
Omnibus: 0.414 Durbin-Watson: 1.871
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.548
Skew: 0.141 Prob(JB): 0.760
Kurtosis: 2.298 Cond. No. 123.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:03:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.028
Method: Least Squares F-statistic: 0.4102
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.529
Time: 23:03:53 Log-Likelihood: -112.88
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 181.5172 159.109 1.141 0.267 -149.368 512.402
expression -19.4202 30.322 -0.640 0.529 -82.479 43.639
Omnibus: 2.272 Durbin-Watson: 2.512
Prob(Omnibus): 0.321 Jarque-Bera (JB): 1.349
Skew: 0.297 Prob(JB): 0.510
Kurtosis: 1.973 Cond. No. 121.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.644 0.130 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.558
Model: OLS Adj. R-squared: 0.438
Method: Least Squares F-statistic: 4.630
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0250
Time: 23:03:53 Log-Likelihood: -69.176
No. Observations: 15 AIC: 146.4
Df Residuals: 11 BIC: 149.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -249.2709 234.664 -1.062 0.311 -765.762 267.220
C(dose)[T.1] 181.7307 305.106 0.596 0.563 -489.803 853.265
expression 55.7108 41.236 1.351 0.204 -35.050 146.472
expression:C(dose)[T.1] -25.6382 52.073 -0.492 0.632 -140.250 88.973
Omnibus: 0.128 Durbin-Watson: 0.958
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.297
Skew: -0.168 Prob(JB): 0.862
Kurtosis: 2.398 Cond. No. 357.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.548
Model: OLS Adj. R-squared: 0.473
Method: Least Squares F-statistic: 7.283
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00849
Time: 23:03:53 Log-Likelihood: -69.340
No. Observations: 15 AIC: 144.7
Df Residuals: 12 BIC: 146.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -157.8731 138.945 -1.136 0.278 -460.609 144.863
C(dose)[T.1] 31.7847 17.823 1.783 0.100 -7.049 70.618
expression 39.6329 24.373 1.626 0.130 -13.472 92.738
Omnibus: 0.034 Durbin-Watson: 0.931
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.259
Skew: 0.022 Prob(JB): 0.879
Kurtosis: 2.358 Cond. No. 120.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:03:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.429
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 9.751
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00809
Time: 23:03:54 Log-Likelihood: -71.103
No. Observations: 15 AIC: 146.2
Df Residuals: 13 BIC: 147.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -295.4882 124.861 -2.367 0.034 -565.234 -25.743
expression 65.7466 21.055 3.123 0.008 20.260 111.233
Omnibus: 5.394 Durbin-Watson: 1.221
Prob(Omnibus): 0.067 Jarque-Bera (JB): 3.127
Skew: 1.106 Prob(JB): 0.209
Kurtosis: 3.332 Cond. No. 99.1