AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.610 | 0.444 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 13.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.47e-05 |
Time: | 04:01:22 | Log-Likelihood: | -100.08 |
No. Observations: | 23 | AIC: | 208.2 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.3741 | 198.648 | 0.299 | 0.768 | -356.400 475.148 |
C(dose)[T.1] | 415.0499 | 345.073 | 1.203 | 0.244 | -307.196 1137.296 |
expression | -0.6219 | 23.906 | -0.026 | 0.980 | -50.657 49.413 |
expression:C(dose)[T.1] | -42.4144 | 40.822 | -1.039 | 0.312 | -127.857 43.028 |
Omnibus: | 0.263 | Durbin-Watson: | 1.986 |
Prob(Omnibus): | 0.877 | Jarque-Bera (JB): | 0.124 |
Skew: | 0.159 | Prob(JB): | 0.940 |
Kurtosis: | 2.832 | Cond. No. | 831. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.36 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.10e-05 |
Time: | 04:01:22 | Log-Likelihood: | -100.72 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 180.1852 | 161.381 | 1.117 | 0.277 | -156.449 516.820 |
C(dose)[T.1] | 56.6584 | 9.629 | 5.884 | 0.000 | 36.573 76.743 |
expression | -15.1672 | 19.416 | -0.781 | 0.444 | -55.669 25.335 |
Omnibus: | 0.411 | Durbin-Watson: | 1.773 |
Prob(Omnibus): | 0.814 | Jarque-Bera (JB): | 0.266 |
Skew: | 0.242 | Prob(JB): | 0.876 |
Kurtosis: | 2.793 | Cond. No. | 320. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:01:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.070 |
Model: | OLS | Adj. R-squared: | 0.026 |
Method: | Least Squares | F-statistic: | 1.577 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.223 |
Time: | 04:01:22 | Log-Likelihood: | -112.27 |
No. Observations: | 23 | AIC: | 228.5 |
Df Residuals: | 21 | BIC: | 230.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -217.0418 | 236.415 | -0.918 | 0.369 | -708.694 274.610 |
expression | 35.2839 | 28.097 | 1.256 | 0.223 | -23.147 93.715 |
Omnibus: | 1.089 | Durbin-Watson: | 2.577 |
Prob(Omnibus): | 0.580 | Jarque-Bera (JB): | 1.019 |
Skew: | 0.367 | Prob(JB): | 0.601 |
Kurtosis: | 2.276 | Cond. No. | 290. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.012 | 0.913 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.305 |
Method: | Least Squares | F-statistic: | 3.052 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0739 |
Time: | 04:01:22 | Log-Likelihood: | -70.758 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -12.9392 | 275.657 | -0.047 | 0.963 | -619.657 593.778 |
C(dose)[T.1] | 178.7287 | 416.413 | 0.429 | 0.676 | -737.790 1095.248 |
expression | 10.3600 | 35.501 | 0.292 | 0.776 | -67.777 88.497 |
expression:C(dose)[T.1] | -16.3925 | 52.202 | -0.314 | 0.759 | -131.288 98.503 |
Omnibus: | 3.219 | Durbin-Watson: | 0.735 |
Prob(Omnibus): | 0.200 | Jarque-Bera (JB): | 2.098 |
Skew: | -0.908 | Prob(JB): | 0.350 |
Kurtosis: | 2.763 | Cond. No. | 540. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.896 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 04:01:22 | Log-Likelihood: | -70.825 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.8739 | 194.516 | 0.236 | 0.818 | -377.940 469.688 |
C(dose)[T.1] | 48.1062 | 18.546 | 2.594 | 0.023 | 7.698 88.514 |
expression | 2.7785 | 25.031 | 0.111 | 0.913 | -51.759 57.316 |
Omnibus: | 2.426 | Durbin-Watson: | 0.798 |
Prob(Omnibus): | 0.297 | Jarque-Bera (JB): | 1.737 |
Skew: | -0.800 | Prob(JB): | 0.419 |
Kurtosis: | 2.528 | Cond. No. | 202. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:01:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.141 |
Model: | OLS | Adj. R-squared: | 0.074 |
Method: | Least Squares | F-statistic: | 2.127 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.168 |
Time: | 04:01:23 | Log-Likelihood: | -74.164 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -202.4087 | 203.248 | -0.996 | 0.337 | -641.499 236.681 |
expression | 37.1636 | 25.484 | 1.458 | 0.168 | -17.892 92.219 |
Omnibus: | 1.058 | Durbin-Watson: | 1.099 |
Prob(Omnibus): | 0.589 | Jarque-Bera (JB): | 0.867 |
Skew: | 0.346 | Prob(JB): | 0.648 |
Kurtosis: | 2.047 | Cond. No. | 175. |