AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.908 0.352 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.678
Method: Least Squares F-statistic: 16.41
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.66e-05
Time: 22:45:15 Log-Likelihood: -98.400
No. Observations: 23 AIC: 204.8
Df Residuals: 19 BIC: 209.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.9618 71.408 1.638 0.118 -32.496 266.419
C(dose)[T.1] -125.9268 91.572 -1.375 0.185 -317.589 65.736
expression -9.2983 10.549 -0.881 0.389 -31.377 12.780
expression:C(dose)[T.1] 26.9877 13.648 1.977 0.063 -1.577 55.552
Omnibus: 2.663 Durbin-Watson: 1.871
Prob(Omnibus): 0.264 Jarque-Bera (JB): 1.343
Skew: 0.222 Prob(JB): 0.511
Kurtosis: 1.903 Cond. No. 212.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.79
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.82e-05
Time: 22:45:15 Log-Likelihood: -100.55
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.1487 48.708 0.167 0.869 -93.455 109.752
C(dose)[T.1] 54.4456 8.656 6.290 0.000 36.390 72.501
expression 6.8248 7.163 0.953 0.352 -8.118 21.767
Omnibus: 0.744 Durbin-Watson: 2.121
Prob(Omnibus): 0.689 Jarque-Bera (JB): 0.774
Skew: 0.271 Prob(JB): 0.679
Kurtosis: 2.283 Cond. No. 78.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:15 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.004132
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.949
Time: 22:45:15 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.5907 80.080 0.931 0.362 -91.944 241.125
expression 0.7685 11.955 0.064 0.949 -24.093 25.630
Omnibus: 3.314 Durbin-Watson: 2.493
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.553
Skew: 0.277 Prob(JB): 0.460
Kurtosis: 1.854 Cond. No. 76.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.076 0.787 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.515
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 3.896
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0404
Time: 22:45:15 Log-Likelihood: -69.871
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.7454 102.483 0.222 0.828 -202.817 248.308
C(dose)[T.1] 253.5347 173.274 1.463 0.171 -127.838 634.908
expression 6.7594 15.409 0.439 0.669 -27.156 40.675
expression:C(dose)[T.1] -32.7549 27.423 -1.194 0.257 -93.113 27.603
Omnibus: 0.945 Durbin-Watson: 0.787
Prob(Omnibus): 0.623 Jarque-Bera (JB): 0.851
Skew: -0.402 Prob(JB): 0.653
Kurtosis: 2.155 Cond. No. 181.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.954
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0270
Time: 22:45:15 Log-Likelihood: -70.785
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.1104 86.508 1.053 0.313 -97.374 279.595
C(dose)[T.1] 47.5168 16.827 2.824 0.015 10.854 84.180
expression -3.5825 12.971 -0.276 0.787 -31.844 24.679
Omnibus: 2.316 Durbin-Watson: 0.791
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.678
Skew: -0.781 Prob(JB): 0.432
Kurtosis: 2.503 Cond. No. 72.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:15 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.088
Model: OLS Adj. R-squared: 0.018
Method: Least Squares F-statistic: 1.259
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.282
Time: 22:45:15 Log-Likelihood: -74.607
No. Observations: 15 AIC: 153.2
Df Residuals: 13 BIC: 154.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 200.6482 95.845 2.093 0.056 -6.412 407.709
expression -16.8198 14.991 -1.122 0.282 -49.207 15.567
Omnibus: 0.201 Durbin-Watson: 1.361
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.396
Skew: -0.106 Prob(JB): 0.821
Kurtosis: 2.233 Cond. No. 64.7