AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.118 0.734 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 12.01
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000123
Time: 19:18:56 Log-Likelihood: -100.88
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -41.1764 178.850 -0.230 0.820 -415.514 333.161
C(dose)[T.1] 188.9578 306.015 0.617 0.544 -451.539 829.455
expression 12.2588 22.972 0.534 0.600 -35.822 60.340
expression:C(dose)[T.1] -17.3974 39.150 -0.444 0.662 -99.339 64.544
Omnibus: 0.756 Durbin-Watson: 1.848
Prob(Omnibus): 0.685 Jarque-Bera (JB): 0.700
Skew: -0.094 Prob(JB): 0.705
Kurtosis: 2.166 Cond. No. 661.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.66
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.67e-05
Time: 19:18:56 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.4308 141.934 0.038 0.970 -290.637 301.499
C(dose)[T.1] 53.0293 8.790 6.033 0.000 34.694 71.364
expression 6.2688 18.225 0.344 0.734 -31.747 44.285
Omnibus: 0.380 Durbin-Watson: 1.907
Prob(Omnibus): 0.827 Jarque-Bera (JB): 0.519
Skew: 0.071 Prob(JB): 0.771
Kurtosis: 2.278 Cond. No. 258.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:18:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.016
Model: OLS Adj. R-squared: -0.031
Method: Least Squares F-statistic: 0.3455
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.563
Time: 19:18:56 Log-Likelihood: -112.92
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.5745 231.989 -0.244 0.810 -539.022 425.873
expression 17.4634 29.711 0.588 0.563 -44.324 79.251
Omnibus: 1.559 Durbin-Watson: 2.616
Prob(Omnibus): 0.459 Jarque-Bera (JB): 1.191
Skew: 0.338 Prob(JB): 0.551
Kurtosis: 2.113 Cond. No. 257.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.139 0.716 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.522
Model: OLS Adj. R-squared: 0.392
Method: Least Squares F-statistic: 4.010
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0374
Time: 19:18:56 Log-Likelihood: -69.759
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -350.6286 333.019 -1.053 0.315 -1083.600 382.342
C(dose)[T.1] 537.6350 391.871 1.372 0.197 -324.868 1400.138
expression 52.5484 41.836 1.256 0.235 -39.532 144.629
expression:C(dose)[T.1] -61.5465 49.454 -1.245 0.239 -170.395 47.302
Omnibus: 2.415 Durbin-Watson: 1.068
Prob(Omnibus): 0.299 Jarque-Bera (JB): 1.380
Skew: -0.741 Prob(JB): 0.502
Kurtosis: 2.886 Cond. No. 602.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.011
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0262
Time: 19:18:56 Log-Likelihood: -70.747
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -0.2274 181.861 -0.001 0.999 -396.468 396.014
C(dose)[T.1] 50.3345 15.944 3.157 0.008 15.595 85.074
expression 8.5041 22.814 0.373 0.716 -41.204 58.212
Omnibus: 2.177 Durbin-Watson: 0.933
Prob(Omnibus): 0.337 Jarque-Bera (JB): 1.531
Skew: -0.752 Prob(JB): 0.465
Kurtosis: 2.564 Cond. No. 187.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:18:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03300
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.859
Time: 19:18:56 Log-Likelihood: -75.281
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.3544 229.711 0.589 0.566 -360.905 631.614
expression -5.2874 29.107 -0.182 0.859 -68.169 57.594
Omnibus: 0.355 Durbin-Watson: 1.563
Prob(Omnibus): 0.837 Jarque-Bera (JB): 0.478
Skew: -0.022 Prob(JB): 0.788
Kurtosis: 2.127 Cond. No. 181.