AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.101 | 0.753 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.82 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000135 |
Time: | 05:23:37 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 170.0362 | 358.793 | 0.474 | 0.641 | -580.927 920.999 |
C(dose)[T.1] | -20.4220 | 671.938 | -0.030 | 0.976 | -1426.805 1385.961 |
expression | -10.1866 | 31.550 | -0.323 | 0.750 | -76.221 55.848 |
expression:C(dose)[T.1] | 6.6262 | 57.506 | 0.115 | 0.909 | -113.734 126.987 |
Omnibus: | 0.552 | Durbin-Watson: | 1.862 |
Prob(Omnibus): | 0.759 | Jarque-Bera (JB): | 0.601 |
Skew: | -0.025 | Prob(JB): | 0.741 |
Kurtosis: | 2.210 | Cond. No. | 2.10e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.69e-05 |
Time: | 05:23:37 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 147.3574 | 292.499 | 0.504 | 0.620 | -462.784 757.499 |
C(dose)[T.1] | 56.9851 | 14.411 | 3.954 | 0.001 | 26.924 87.047 |
expression | -8.1921 | 25.719 | -0.319 | 0.753 | -61.840 45.456 |
Omnibus: | 0.455 | Durbin-Watson: | 1.858 |
Prob(Omnibus): | 0.796 | Jarque-Bera (JB): | 0.554 |
Skew: | -0.019 | Prob(JB): | 0.758 |
Kurtosis: | 2.240 | Cond. No. | 783. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:23:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.378 |
Model: | OLS | Adj. R-squared: | 0.348 |
Method: | Least Squares | F-statistic: | 12.75 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00180 |
Time: | 05:23:37 | Log-Likelihood: | -107.65 |
No. Observations: | 23 | AIC: | 219.3 |
Df Residuals: | 21 | BIC: | 221.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -761.5514 | 235.633 | -3.232 | 0.004 | -1251.578 -271.525 |
expression | 72.6257 | 20.336 | 3.571 | 0.002 | 30.335 114.917 |
Omnibus: | 1.514 | Durbin-Watson: | 2.368 |
Prob(Omnibus): | 0.469 | Jarque-Bera (JB): | 1.265 |
Skew: | 0.408 | Prob(JB): | 0.531 |
Kurtosis: | 2.190 | Cond. No. | 483. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.809 | 0.386 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.559 |
Model: | OLS | Adj. R-squared: | 0.439 |
Method: | Least Squares | F-statistic: | 4.657 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0246 |
Time: | 05:23:37 | Log-Likelihood: | -69.151 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.3256 | 413.354 | 0.250 | 0.807 | -806.461 1013.112 |
C(dose)[T.1] | 1173.9250 | 812.078 | 1.446 | 0.176 | -613.446 2961.296 |
expression | -3.5479 | 40.841 | -0.087 | 0.932 | -93.437 86.342 |
expression:C(dose)[T.1] | -108.8706 | 79.064 | -1.377 | 0.196 | -282.889 65.148 |
Omnibus: | 3.301 | Durbin-Watson: | 1.011 |
Prob(Omnibus): | 0.192 | Jarque-Bera (JB): | 1.586 |
Skew: | -0.784 | Prob(JB): | 0.452 |
Kurtosis: | 3.278 | Cond. No. | 1.39e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.484 |
Model: | OLS | Adj. R-squared: | 0.397 |
Method: | Least Squares | F-statistic: | 5.618 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0190 |
Time: | 05:23:37 | Log-Likelihood: | -70.344 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 12 | BIC: | 148.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 397.2415 | 366.959 | 1.083 | 0.300 | -402.295 1196.778 |
C(dose)[T.1] | 55.9245 | 16.973 | 3.295 | 0.006 | 18.943 92.906 |
expression | -32.5975 | 36.252 | -0.899 | 0.386 | -111.584 46.389 |
Omnibus: | 1.879 | Durbin-Watson: | 0.835 |
Prob(Omnibus): | 0.391 | Jarque-Bera (JB): | 1.190 |
Skew: | -0.675 | Prob(JB): | 0.551 |
Kurtosis: | 2.710 | Cond. No. | 499. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:23:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.059 |
Method: | Least Squares | F-statistic: | 0.2162 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.650 |
Time: | 05:23:37 | Log-Likelihood: | -75.176 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -111.4993 | 441.407 | -0.253 | 0.805 | -1065.101 842.103 |
expression | 20.0596 | 43.146 | 0.465 | 0.650 | -73.152 113.271 |
Omnibus: | 0.501 | Durbin-Watson: | 1.520 |
Prob(Omnibus): | 0.778 | Jarque-Bera (JB): | 0.541 |
Skew: | 0.032 | Prob(JB): | 0.763 |
Kurtosis: | 2.072 | Cond. No. | 452. |