AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.949 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000142 |
Time: | 22:47:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 73.1249 | 207.605 | 0.352 | 0.729 | -361.397 507.647 |
C(dose)[T.1] | 23.9045 | 423.149 | 0.056 | 0.956 | -861.756 909.565 |
expression | -1.9310 | 21.183 | -0.091 | 0.928 | -46.267 42.405 |
expression:C(dose)[T.1] | 2.9423 | 41.299 | 0.071 | 0.944 | -83.497 89.382 |
Omnibus: | 0.369 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.832 | Jarque-Bera (JB): | 0.512 |
Skew: | 0.060 | Prob(JB): | 0.774 |
Kurtosis: | 2.279 | Cond. No. | 1.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 22:47:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 65.5419 | 173.754 | 0.377 | 0.710 | -296.904 427.987 |
C(dose)[T.1] | 54.0343 | 13.820 | 3.910 | 0.001 | 25.206 82.863 |
expression | -1.1569 | 17.726 | -0.065 | 0.949 | -38.133 35.819 |
Omnibus: | 0.285 | Durbin-Watson: | 1.884 |
Prob(Omnibus): | 0.867 | Jarque-Bera (JB): | 0.462 |
Skew: | 0.050 | Prob(JB): | 0.794 |
Kurtosis: | 2.313 | Cond. No. | 406. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.381 |
Model: | OLS | Adj. R-squared: | 0.351 |
Method: | Least Squares | F-statistic: | 12.92 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00170 |
Time: | 22:47:16 | Log-Likelihood: | -107.59 |
No. Observations: | 23 | AIC: | 219.2 |
Df Residuals: | 21 | BIC: | 221.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -448.8162 | 147.134 | -3.050 | 0.006 | -754.798 -142.835 |
expression | 52.4110 | 14.579 | 3.595 | 0.002 | 22.092 82.730 |
Omnibus: | 4.123 | Durbin-Watson: | 2.424 |
Prob(Omnibus): | 0.127 | Jarque-Bera (JB): | 1.510 |
Skew: | 0.107 | Prob(JB): | 0.470 |
Kurtosis: | 1.763 | Cond. No. | 264. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.033 | 0.858 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.314 |
Method: | Least Squares | F-statistic: | 3.141 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0691 |
Time: | 22:47:16 | Log-Likelihood: | -70.660 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -4.7769 | 336.762 | -0.014 | 0.989 | -745.985 736.432 |
C(dose)[T.1] | 272.5066 | 470.829 | 0.579 | 0.574 | -763.781 1308.794 |
expression | 8.0213 | 37.388 | 0.215 | 0.834 | -74.268 90.311 |
expression:C(dose)[T.1] | -24.9312 | 52.462 | -0.475 | 0.644 | -140.399 90.536 |
Omnibus: | 3.095 | Durbin-Watson: | 0.674 |
Prob(Omnibus): | 0.213 | Jarque-Bera (JB): | 2.174 |
Skew: | -0.910 | Prob(JB): | 0.337 |
Kurtosis: | 2.594 | Cond. No. | 703. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.915 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0276 |
Time: | 22:47:16 | Log-Likelihood: | -70.812 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 109.2060 | 228.639 | 0.478 | 0.641 | -388.956 607.368 |
C(dose)[T.1] | 48.8907 | 15.806 | 3.093 | 0.009 | 14.452 83.330 |
expression | -4.6410 | 25.367 | -0.183 | 0.858 | -59.912 50.630 |
Omnibus: | 2.855 | Durbin-Watson: | 0.824 |
Prob(Omnibus): | 0.240 | Jarque-Bera (JB): | 1.972 |
Skew: | -0.868 | Prob(JB): | 0.373 |
Kurtosis: | 2.620 | Cond. No. | 265. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.012 |
Model: | OLS | Adj. R-squared: | -0.064 |
Method: | Least Squares | F-statistic: | 0.1585 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.697 |
Time: | 22:47:16 | Log-Likelihood: | -75.209 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 209.6579 | 291.509 | 0.719 | 0.485 | -420.109 839.425 |
expression | -12.9359 | 32.491 | -0.398 | 0.697 | -83.128 57.257 |
Omnibus: | 0.675 | Durbin-Watson: | 1.675 |
Prob(Omnibus): | 0.713 | Jarque-Bera (JB): | 0.605 |
Skew: | -0.020 | Prob(JB): | 0.739 |
Kurtosis: | 2.017 | Cond. No. | 262. |