AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.421 | 0.524 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.649 |
Method: | Least Squares | F-statistic: | 14.54 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.70e-05 |
Time: | 18:19:19 | Log-Likelihood: | -99.390 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 19 | BIC: | 211.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -481.1027 | 344.749 | -1.396 | 0.179 | -1202.670 240.464 |
C(dose)[T.1] | 883.7687 | 522.916 | 1.690 | 0.107 | -210.706 1978.244 |
expression | 52.0933 | 33.544 | 1.553 | 0.137 | -18.115 122.302 |
expression:C(dose)[T.1] | -80.8116 | 50.879 | -1.588 | 0.129 | -187.304 25.680 |
Omnibus: | 0.315 | Durbin-Watson: | 1.861 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.480 |
Skew: | -0.038 | Prob(JB): | 0.787 |
Kurtosis: | 2.296 | Cond. No. | 1.64e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.09 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.30e-05 |
Time: | 18:19:19 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -120.1523 | 268.929 | -0.447 | 0.660 | -681.128 440.824 |
C(dose)[T.1] | 53.3304 | 8.679 | 6.145 | 0.000 | 35.226 71.435 |
expression | 16.9678 | 26.164 | 0.649 | 0.524 | -37.610 71.545 |
Omnibus: | 0.247 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.884 | Jarque-Bera (JB): | 0.429 |
Skew: | -0.157 | Prob(JB): | 0.807 |
Kurtosis: | 2.409 | Cond. No. | 644. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 18:19:19 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.007 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.1564 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.696 |
Time: | 18:19:19 | Log-Likelihood: | -113.02 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -96.6202 | 445.952 | -0.217 | 0.831 | -1024.028 830.787 |
expression | 17.1598 | 43.391 | 0.395 | 0.696 | -73.077 107.396 |
Omnibus: | 3.313 | Durbin-Watson: | 2.437 |
Prob(Omnibus): | 0.191 | Jarque-Bera (JB): | 1.646 |
Skew: | 0.333 | Prob(JB): | 0.439 |
Kurtosis: | 1.871 | Cond. No. | 643. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.032 | 0.068 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.616 |
Model: | OLS | Adj. R-squared: | 0.511 |
Method: | Least Squares | F-statistic: | 5.870 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0121 |
Time: | 18:19:19 | Log-Likelihood: | -68.131 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 11 | BIC: | 147.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -287.3197 | 285.744 | -1.006 | 0.336 | -916.238 341.598 |
C(dose)[T.1] | -455.4304 | 557.276 | -0.817 | 0.431 | -1681.987 771.126 |
expression | 33.6632 | 27.098 | 1.242 | 0.240 | -25.980 93.307 |
expression:C(dose)[T.1] | 47.0605 | 52.472 | 0.897 | 0.389 | -68.429 162.550 |
Omnibus: | 0.382 | Durbin-Watson: | 0.998 |
Prob(Omnibus): | 0.826 | Jarque-Bera (JB): | 0.506 |
Skew: | -0.188 | Prob(JB): | 0.777 |
Kurtosis: | 2.183 | Cond. No. | 1.05e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.519 |
Method: | Least Squares | F-statistic: | 8.542 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00493 |
Time: | 18:19:19 | Log-Likelihood: | -68.660 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 12 | BIC: | 145.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -419.5887 | 242.741 | -1.729 | 0.110 | -948.476 109.299 |
C(dose)[T.1] | 44.2177 | 13.841 | 3.195 | 0.008 | 14.060 74.375 |
expression | 46.2147 | 23.015 | 2.008 | 0.068 | -3.931 96.360 |
Omnibus: | 1.057 | Durbin-Watson: | 1.119 |
Prob(Omnibus): | 0.589 | Jarque-Bera (JB): | 0.874 |
Skew: | -0.514 | Prob(JB): | 0.646 |
Kurtosis: | 2.415 | Cond. No. | 383. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 18:19:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.237 |
Model: | OLS | Adj. R-squared: | 0.178 |
Method: | Least Squares | F-statistic: | 4.027 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0660 |
Time: | 18:19:19 | Log-Likelihood: | -73.276 |
No. Observations: | 15 | AIC: | 150.6 |
Df Residuals: | 13 | BIC: | 152.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -535.5598 | 313.685 | -1.707 | 0.112 | -1213.234 142.115 |
expression | 59.3856 | 29.593 | 2.007 | 0.066 | -4.547 123.318 |
Omnibus: | 0.119 | Durbin-Watson: | 1.721 |
Prob(Omnibus): | 0.942 | Jarque-Bera (JB): | 0.325 |
Skew: | 0.122 | Prob(JB): | 0.850 |
Kurtosis: | 2.321 | Cond. No. | 378. |