AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.297 0.592 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.678
Method: Least Squares F-statistic: 16.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.63e-05
Time: 05:27:14 Log-Likelihood: -98.378
No. Observations: 23 AIC: 204.8
Df Residuals: 19 BIC: 209.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.0911 126.902 0.119 0.907 -250.517 280.699
C(dose)[T.1] 800.2368 344.034 2.326 0.031 80.166 1520.308
expression 4.1064 13.309 0.309 0.761 -23.750 31.963
expression:C(dose)[T.1] -72.4981 33.639 -2.155 0.044 -142.905 -2.091
Omnibus: 0.127 Durbin-Watson: 1.497
Prob(Omnibus): 0.939 Jarque-Bera (JB): 0.197
Skew: 0.146 Prob(JB): 0.906
Kurtosis: 2.654 Cond. No. 1.01e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.45e-05
Time: 05:27:14 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 123.1958 126.745 0.972 0.343 -141.189 387.581
C(dose)[T.1] 59.2980 13.980 4.242 0.000 30.136 88.460
expression -7.2421 13.290 -0.545 0.592 -34.965 20.481
Omnibus: 0.921 Durbin-Watson: 1.978
Prob(Omnibus): 0.631 Jarque-Bera (JB): 0.751
Skew: 0.036 Prob(JB): 0.687
Kurtosis: 2.118 Cond. No. 294.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:27:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.343
Model: OLS Adj. R-squared: 0.312
Method: Least Squares F-statistic: 10.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00332
Time: 05:27:14 Log-Likelihood: -108.27
No. Observations: 23 AIC: 220.5
Df Residuals: 21 BIC: 222.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -285.9807 110.571 -2.586 0.017 -515.925 -56.037
expression 36.8665 11.131 3.312 0.003 13.718 60.015
Omnibus: 1.078 Durbin-Watson: 1.796
Prob(Omnibus): 0.583 Jarque-Bera (JB): 1.026
Skew: 0.391 Prob(JB): 0.599
Kurtosis: 2.323 Cond. No. 190.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.988 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.324
Method: Least Squares F-statistic: 3.241
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0642
Time: 05:27:14 Log-Likelihood: -70.550
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -197.4067 492.600 -0.401 0.696 -1281.612 886.799
C(dose)[T.1] 432.6606 589.845 0.734 0.479 -865.579 1730.901
expression 30.7575 57.193 0.538 0.601 -95.124 156.639
expression:C(dose)[T.1] -44.2948 68.119 -0.650 0.529 -194.224 105.635
Omnibus: 2.746 Durbin-Watson: 0.686
Prob(Omnibus): 0.253 Jarque-Bera (JB): 1.822
Skew: -0.840 Prob(JB): 0.402
Kurtosis: 2.693 Cond. No. 941.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 05:27:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.4547 261.242 0.274 0.789 -497.744 640.653
C(dose)[T.1] 49.2678 16.406 3.003 0.011 13.522 85.013
expression -0.4676 30.311 -0.015 0.988 -66.509 65.574
Omnibus: 2.757 Durbin-Watson: 0.809
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.891
Skew: -0.850 Prob(JB): 0.388
Kurtosis: 2.629 Cond. No. 294.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:27:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.035
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.4649
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.507
Time: 05:27:14 Log-Likelihood: -75.037
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -125.4770 321.542 -0.390 0.703 -820.127 569.173
expression 25.2125 36.976 0.682 0.507 -54.669 105.093
Omnibus: 0.796 Durbin-Watson: 1.526
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.739
Skew: 0.309 Prob(JB): 0.691
Kurtosis: 2.105 Cond. No. 284.