AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.029 0.867 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.92
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000128
Time: 22:48:44 Log-Likelihood: -100.93
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.2518 136.316 0.853 0.404 -169.060 401.564
C(dose)[T.1] -19.1637 165.471 -0.116 0.909 -365.498 327.170
expression -8.5832 18.839 -0.456 0.654 -48.013 30.847
expression:C(dose)[T.1] 10.0303 22.860 0.439 0.666 -37.817 57.878
Omnibus: 0.062 Durbin-Watson: 1.825
Prob(Omnibus): 0.969 Jarque-Bera (JB): 0.284
Skew: 0.030 Prob(JB): 0.868
Kurtosis: 2.459 Cond. No. 384.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.54
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.79e-05
Time: 22:48:44 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.0146 75.811 0.884 0.387 -91.124 225.153
C(dose)[T.1] 53.3327 8.764 6.086 0.000 35.052 71.613
expression -1.7716 10.454 -0.169 0.867 -23.579 20.035
Omnibus: 0.407 Durbin-Watson: 1.894
Prob(Omnibus): 0.816 Jarque-Bera (JB): 0.535
Skew: 0.083 Prob(JB): 0.765
Kurtosis: 2.271 Cond. No. 128.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:48:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01295
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.910
Time: 22:48:44 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.8856 124.726 0.753 0.460 -165.497 353.268
expression -1.9604 17.229 -0.114 0.910 -37.789 33.869
Omnibus: 3.168 Durbin-Watson: 2.488
Prob(Omnibus): 0.205 Jarque-Bera (JB): 1.561
Skew: 0.301 Prob(JB): 0.458
Kurtosis: 1.875 Cond. No. 128.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.972 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.565
Model: OLS Adj. R-squared: 0.447
Method: Least Squares F-statistic: 4.766
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0230
Time: 22:48:44 Log-Likelihood: -69.054
No. Observations: 15 AIC: 146.1
Df Residuals: 11 BIC: 148.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 601.7159 347.953 1.729 0.112 -164.124 1367.556
C(dose)[T.1] -636.4721 400.429 -1.589 0.140 -1517.810 244.866
expression -74.6298 48.580 -1.536 0.153 -181.553 32.293
expression:C(dose)[T.1] 94.1673 54.886 1.716 0.114 -26.636 214.971
Omnibus: 1.761 Durbin-Watson: 1.068
Prob(Omnibus): 0.415 Jarque-Bera (JB): 0.830
Skew: -0.576 Prob(JB): 0.660
Kurtosis: 2.982 Cond. No. 635.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.886
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0280
Time: 22:48:44 Log-Likelihood: -70.832
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.5756 174.855 0.421 0.681 -307.400 454.552
C(dose)[T.1] 49.7022 21.303 2.333 0.038 3.287 96.118
expression -0.8586 24.371 -0.035 0.972 -53.959 52.241
Omnibus: 2.759 Durbin-Watson: 0.811
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.897
Skew: -0.851 Prob(JB): 0.387
Kurtosis: 2.625 Cond. No. 171.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:48:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.199
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 3.226
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0957
Time: 22:48:44 Log-Likelihood: -73.638
No. Observations: 15 AIC: 151.3
Df Residuals: 13 BIC: 152.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -186.2888 156.135 -1.193 0.254 -523.599 151.021
expression 37.4605 20.857 1.796 0.096 -7.598 82.519
Omnibus: 0.240 Durbin-Watson: 0.977
Prob(Omnibus): 0.887 Jarque-Bera (JB): 0.180
Skew: -0.204 Prob(JB): 0.914
Kurtosis: 2.651 Cond. No. 131.