AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.044 | 0.836 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.13 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000115 |
Time: | 22:55:52 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 12.1411 | 84.536 | 0.144 | 0.887 | -164.796 189.078 |
C(dose)[T.1] | 160.0359 | 169.907 | 0.942 | 0.358 | -195.583 515.655 |
expression | 6.0934 | 12.212 | 0.499 | 0.624 | -19.468 31.654 |
expression:C(dose)[T.1] | -15.1547 | 23.985 | -0.632 | 0.535 | -65.357 35.047 |
Omnibus: | 0.130 | Durbin-Watson: | 1.710 |
Prob(Omnibus): | 0.937 | Jarque-Bera (JB): | 0.351 |
Skew: | -0.031 | Prob(JB): | 0.839 |
Kurtosis: | 2.398 | Cond. No. | 324. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.77e-05 |
Time: | 22:55:52 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.2647 | 71.723 | 0.547 | 0.590 | -110.347 188.877 |
C(dose)[T.1] | 52.8417 | 9.075 | 5.823 | 0.000 | 33.911 71.772 |
expression | 2.1646 | 10.352 | 0.209 | 0.836 | -19.429 23.758 |
Omnibus: | 0.478 | Durbin-Watson: | 1.806 |
Prob(Omnibus): | 0.787 | Jarque-Bera (JB): | 0.569 |
Skew: | 0.061 | Prob(JB): | 0.752 |
Kurtosis: | 2.239 | Cond. No. | 118. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:55:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.056 |
Model: | OLS | Adj. R-squared: | 0.011 |
Method: | Least Squares | F-statistic: | 1.250 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.276 |
Time: | 22:55:52 | Log-Likelihood: | -112.44 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -45.8329 | 112.500 | -0.407 | 0.688 | -279.790 188.124 |
expression | 17.9019 | 16.010 | 1.118 | 0.276 | -15.393 51.196 |
Omnibus: | 2.213 | Durbin-Watson: | 2.376 |
Prob(Omnibus): | 0.331 | Jarque-Bera (JB): | 1.405 |
Skew: | 0.344 | Prob(JB): | 0.495 |
Kurtosis: | 2.004 | Cond. No. | 115. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.204 | 0.294 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.500 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 3.662 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0474 |
Time: | 22:55:52 | Log-Likelihood: | -70.106 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -171.9077 | 294.705 | -0.583 | 0.571 | -820.548 476.733 |
C(dose)[T.1] | 92.9768 | 412.726 | 0.225 | 0.826 | -815.428 1001.382 |
expression | 34.1658 | 42.038 | 0.813 | 0.434 | -58.359 126.691 |
expression:C(dose)[T.1] | -6.8914 | 58.216 | -0.118 | 0.908 | -135.024 121.241 |
Omnibus: | 1.847 | Durbin-Watson: | 1.033 |
Prob(Omnibus): | 0.397 | Jarque-Bera (JB): | 1.191 |
Skew: | -0.425 | Prob(JB): | 0.551 |
Kurtosis: | 1.911 | Cond. No. | 513. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.499 |
Model: | OLS | Adj. R-squared: | 0.416 |
Method: | Least Squares | F-statistic: | 5.977 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0158 |
Time: | 22:55:53 | Log-Likelihood: | -70.116 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -146.7354 | 195.476 | -0.751 | 0.467 | -572.642 279.171 |
C(dose)[T.1] | 44.1585 | 15.691 | 2.814 | 0.016 | 9.970 78.347 |
expression | 30.5724 | 27.861 | 1.097 | 0.294 | -30.131 91.276 |
Omnibus: | 1.964 | Durbin-Watson: | 1.000 |
Prob(Omnibus): | 0.375 | Jarque-Bera (JB): | 1.210 |
Skew: | -0.415 | Prob(JB): | 0.546 |
Kurtosis: | 1.883 | Cond. No. | 190. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:55:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.168 |
Model: | OLS | Adj. R-squared: | 0.104 |
Method: | Least Squares | F-statistic: | 2.633 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.129 |
Time: | 22:55:53 | Log-Likelihood: | -73.917 |
No. Observations: | 15 | AIC: | 151.8 |
Df Residuals: | 13 | BIC: | 153.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -285.9003 | 234.099 | -1.221 | 0.244 | -791.641 219.841 |
expression | 53.5127 | 32.978 | 1.623 | 0.129 | -17.733 124.758 |
Omnibus: | 2.082 | Durbin-Watson: | 1.692 |
Prob(Omnibus): | 0.353 | Jarque-Bera (JB): | 1.239 |
Skew: | 0.415 | Prob(JB): | 0.538 |
Kurtosis: | 1.862 | Cond. No. | 183. |